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Summary
Executorlib enables the execution of hierarchical Python workflows on heterogenous computing
resources of high-performance computing (HPC) clusters. This is achieved by extending the
Executor class of the Python standard library for asynchronously executing callables with an
interface to HPC job schedulers. The initial release of Executorlib supports the Simple Linux
Utility for Resource Management (SLURM) and the flux framework as HPC job schedulers to
start Python processes with dedicated computing resources such as CPU cores, memory, or
accelerators like GPUs. For heterogenous workflows, Executorlib enables the use of parallel
computing frameworks like the message passing interface (MPI) or of dedicated GPU libraries
on a per workflow step basis. Python workflows can be up-scaled with Executorlib from a
laptop up to the latest Exascale HPC clusters with minimal code changes including support for
hierarchical workflows.

Statement of Need
The convergence of artificial intelligence (AI) and high-performance computing (HPC) workflows
(Silva et al., 2021) is one of the key drivers for the rise of Python workflows for HPC. To avoid
intrusive code changes, interfaces to performance critical scientific software packages were
traditionally implemented using file-based communication and control shell scripts, leading
to poor maintainability, portability, and scalability. This approach is however losing ground
to more efficient alternatives, such as the use of direct Python bindings, as their support
is now increasingly common in scientific software packages and especially machine learning
packages and AI frameworks. This enables the programmer to easily express complex workloads
that require the orchestration of multiple codes. Still, Python workflows for HPC also come
with challenges, like (1) safely terminating Python processes, (2) controlling the resources of
Python processes and (3) the management of Python environments (Straßel et al., 2020). The
first two of these challenges can be addressed by developing strategies and tools to interface
HPC job schedulers such as SLURM (Jette et al., 2002) with Python in order to control the
execution and manage the computational resources required to execute heterogenous HPC
workflows. A number of Python workflow frameworks have been developed for both types
of interfaces, ranging from domain-specific solutions for fields like high-throughput screening
in computational materials science, e.g., fireworks (Jain et al., 2015), pyiron (Janssen et al.,
2019), and aiida (Huber et al., 2020), to generalized Python interfaces for job schedulers,
e.g., myqueue (Mortensen et al., 2020) and PSI/j (Hategan-Marandiuc et al., 2023), and
task scheduling frameworks that implement their own task scheduling on top of the HPC job
scheduler, e.g., dask (Rocklin, 2015), parsl (Babuji et al., 2019), and jobflow (Rosen et al.,
2024). While these tools can be powerful, they introduce new constructs unfamiliar to most
Python developers, adding complexity and creating a barrier to entry.
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Features and Implementation
To address this limitation while at the same time leveraging the powerful and novel hierarchical
HPC resource managers like flux framework (Ahn et al., 2014), we introduce Executorlib,
which instead leverages and naturally extends the familiar Executor interface defined by the
Python standard library from single-node shared-memory operation to multi-node distributed
operation on HPC platforms. Figure 1 illustrates the internal functionality of Executorlib.

Figure 1: Illustration of the communication between the Executorlib Executor, the job scheduler and the
Python process to asynchronously execute the submitted Python function (on the right).

Currently, Executorlib supports five different job schedulers implemented as different Executor
classes. The first is the SingleNodeExecutor for rapid prototyping on a laptop or local
workstation in a way that is functionally similar to the standard ProcessPoolExecutor. The
second, SlurmClusterExecutor, submits Python functions as individual jobs to a SLURM job
scheduler using the sbatch command, which can be useful for long-running tasks, e.g., that
call a compute intensive legacy code. The third is the SlurmJobExecutor, which distributes
Python functions in an existing SLURM job using the srun command. Analogously, the
FluxClusterExecutor submits Python functions as individual jobs to a flux job scheduler and
the FluxJobExecutor distributes Python functions in a flux job. Given the hierarchial approach
of the flux scheduler there is no limit to the number of FluxJobExecutor instances which can
be nested inside each other to construct hierarchical workflows.

To assign dedicated computing resources to individual Python functions, the Executorlib
Executor classes extend the submission function submit() to support not only the Python
function and its inputs, but also a Python dictionary specifying the requested computing
resources, resource_dict. The resource dictionary can define the number of compute cores,
number of threads, number of GPUs, as well as job scheduler specific parameters like the
working directory, maximum run time or the maximum memory. With this hierarchical approach,
Executorlib allows the user to finely control the execution of each individual Python function,
using parallel communication libraries like the Message Passing Interface (MPI) for Python
(Dalcín et al., 2005) or GPU-optimized libraries to aggressively optimize complex compute
intensive tasks of heterogenous HPC that are best solved by tightly-coupled parallelization
approaches, while offering a simple and easy to maintain approach to the orchestration of many
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such weakly-coupled tasks. This ability to seamlessly combine different programming models
again accelerates the rapid prototyping of heterogenous HPC workflows without sacrificing
performance of critical code components.

Usage To-Date
While initially developed in the US DOE Exascale Computing Project’s Exascale Atomistic
Capability for Accuracy, Length and Time (EXAALT) to accelerate the development of
computational materials science simulation workflows for the Exascale, Executorlib has since
been generalized to support a wide-range of backends and HPC clusters at different scales.
Based on this generalization, it is also been implemented in the pyiron workflow framework
(Janssen et al., 2019) as the primary task scheduling interface.

Additional Details
The full documentation including a number of examples for the individual features is available at
executorlib.readthedocs.io with the corresponding source code at github.com/pyiron/executorlib.
Executorlib is developed an as open-source library with a focus on stability.
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