
AutoEmulate: A Python package for semi-automated
emulation
Martin A. Stoffel 1¶, Bryan M. Li 1,2, Kalle Westerling 1, Sophie
Arana 1, Max Balmus 1,3, Eric Daub 1, and Steve Niederer 1,3

1 The Alan Turing Institute, London, United Kingdom 2 University of Edinburgh, Edinburgh, United
Kingdom 3 Imperial College London, London, United Kingdom ¶ Corresponding author

DOI: 10.21105/joss.07626

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @willu47
• @lbl59

Submitted: 03 December 2024
Published: 24 March 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Simulations are ubiquitous in research and application, but are often too slow and computa-
tionally expensive to deeply explore the underlying system. One solution is to create efficient
emulators (also surrogate- or meta-models) to approximate simulations, but this requires sub-
stantial expertise. Here, we present AutoEmulate, a low-code, AutoML-style python package
for emulation. AutoEmulate makes it easy to fit and compare emulators, abstracting away
the need for extensive machine learning (ML) experimentation. The package includes a range
of emulators, from Gaussian Processes, Support Vector Machines and Gradient Boosting
Models to novel, experimental deep learning emulators such as Neural Processes (Garnelo et
al., 2018). It also implements global sensitivity analysis as a common emulator application,
which quantifies the relative contribution of different inputs to the output variance. Through
community feedback and collaboration, we aim for AutoEmulate to evolve into an end-to-end
tool for most emulation problems.

Statement of need
To understand complex real-world systems, researchers and engineers often construct computer
simulations. These can be computationally expensive and take minutes, hours or even days
to run. For tasks like optimisation, sensitivity analysis or uncertainty quantification where
thousands or even millions of runs are needed, a solution has long been to approximate
simulations with efficient emulators, which can be orders of magnitudes faster (Forrester &
Keane, 2009; Kudela & Matousek, 2022). Emulation is becoming increasingly widespread,
ranging from engineering (Yondo et al., 2018), architecture (Westermann & Evins, 2019),
biomedical (Strocchi et al., 2023) and climate science (Bounceur et al., 2015), to agent-based
models (Angione et al., 2022).

A typical emulation pipeline involves three steps: 1. Evaluating the simulation at a small,
strategically chosen set of inputs using techniques such as Latin Hypercube Sampling (McKay
et al., 1979) to create a representative dataset, 2. constructing a high-accuracy emulator using
that dataset, which involves model selection, hyperparameter optimisation and evaluation and
3. applying the emulator to tasks such as prediction, sensitivity analysis, or optimisation. A
key challenge is the emulator construction, which requires machine learning expertise and
familiarity with an evolving ecosystem of models and tools - creating a significant barrier for
researchers focused on studying the underlying system rather than building emulators.

AutoEmulate automates emulator building, with the goal to eventually streamline the whole
emulation pipeline. For people new to ML, AutoEmulate compares, optimises and evaluates a
range of models to create an efficient emulator for their simulation in just a few lines of code.
For experienced surrogate modellers, AutoEmulate provides a reference set of cutting-edge
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emulators to quickly benchmark new models against. The package includes classic emulators
such as Radial Basis Functions and Gaussian Processes, established ML models like Gradient
Boosting and Support Vector Machines, as well as experimental deep learning emulators such
as Conditional Neural Processes (Garnelo et al., 2018). AutoEmulate is built to be extensible.
Emulators follow the popular scikit-learn estimator template and PyTorch (Paszke et al., 2019)
deep learning models are supported with little overhead using a skorch (Tietz et al., 2017)
interface.

AutoEmulate fills a gap in the current landscape of surrogate modeling tools as it’s both highly
accessible for newcomers while providing cutting-edge emulators for experienced surrogate
modelers. In contrast, existing libraries either focus on lower level implementations of specific
models, like GPflow (Matthews et al., 2017) and GPytorch (Gardner et al., 2018), or provide
multiple emulators and applications but require to manually pre-process data, compare emulators
and optimise hyperparameters like SMT in Python (Saves et al., 2024) or Surrogates.jl in Julia.

Pipeline
The inputs for AutoEmulate are X and y, where X is a 2D array (e.g. numpy-array, Pandas
DataFrame) containing simulation parameters in columns and their values in rows, and y is an
array containing the corresponding simulation outputs. A dataset X, y is usually obtained by
constructing a set of parameters X using sampling techniques like Latin Hypercube Sampling
(McKay et al., 1979) and evaluating the simulation on these inputs to obtain outputs y. With
X and y, we can create an emulator with AutoEmulate in just a few lines of code.

from autoemulate.compare import AutoEmulate

ae = AutoEmulate()

ae.setup(X, y) # customise pipeline

ae.compare() # runs the pipeline

Under the hood, AutoEmulate runs a complete ML pipeline. It splits the data into training
and test sets, standardises inputs, fits a set of user-specified emulators, compares them using
cross-validation and optionally optimises hyperparameters using pre-defined search spaces.
All these steps can be customised in setup(). After running compare(), the cross-validation
results can be visualised and summarised.

ae.plot_cv() # visualise results

ae.summarise_cv() # cv scores for each model

Table 1: Average cross-validation scores

Model Short Name RMSE R²
Gaussian Process gp 0.1027 0.9851
Random Forest rf 0.1511 0.9677
Gradient Boosting gb 0.1566 0.9642
Conditional Neural Process cnp 0.1915 0.9465
Radial Basis Functions rbf 0.3518 0.7670
Support Vector Machines svm 0.4924 0.6635
LightGBM lgbm 0.6044 0.4930
Second Order Polynomial sop 0.8378 0.0297

After comparing cross-validation metrics and plots, an emulator can be selected and evaluated
on the held-out test set (defaults to 20% of the data).
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emulator = ae.get_model("GaussianProcess") # get fitted emulator

ae.evaluate(emulator) # calculate test set scores

ae.plot_eval(emulator, input_index=[0, 1]) # plot predictions

Figure 1: Test set predictions

Finally, the emulator can be refitted on the combined training and test set data before applying
it. It’s now ready to be used as an efficient replacement for the original simulation, being able
to generate tens of thousands of new data points in negligible time using predict(). Lastly,
we implemented global sensitivity analysis, which requires a large number of samples from the
emulator to quantify how each simulation parameter and their interactions contribute to the
output variance.

emulator = ae.refit(emulator) # refit using full data

emulator.predict(X) # emulate!

ae.sensitivity_analysis(emulator) # global SA with Sobol indices
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