
aweSOM: a CPU/GPU-accelerated Self-organizing Map
and Statistically Combined Ensemble Framework for
Machine-learning Clustering Analysis
Trung Ha 1,2,3¶, Joonas Nättilä 4,5,2, and Jordy Davelaar 6,7,2,5

1 Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003, USA 2 Center
for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA 3
Department of Physics, University of North Texas, Denton, TX 76203, USA 4 Department of Physics,
University of Helsinki, P.O. Box 64, University of Helsinki, FI-00014, Finland 5 Physics Department and
Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027,
USA 6 Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544,
USA 7 NASA Hubble Fellowship Program, Einstein Fellow ¶ Corresponding author

DOI: 10.21105/joss.07613

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @apizzuto
• @Abinashbunty

Submitted: 14 October 2024
Published: 04 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We introduce aweSOM, an open-source Python package for machine learning (ML) clustering and
classification, using a Self-organizing Maps (SOM, Kohonen, 1990) algorithm that incorporates
CPU/GPU acceleration to accommodate large (𝑁 > 106, where 𝑁 is the number of data
points), multidimensional datasets. aweSOM consists of two main modules, one that handles
the initialization and training of the SOM, and another that stacks the results of multiple
SOM realizations to obtain more statistically robust clusters.

Existing Python-based SOM implementations (e.g., POPSOM, Yuan (2018); MiniSom, Vettigli
(2018); sklearn-som) primarily serve as proof-of-concept demonstrations, optimized for smaller
datasets, but lacking scalability for large, multidimensional data. aweSOM provides a solution
for this gap in capability, with good performance scaling up to ∼ 108 individual points, and
capable of utilizing multiple features per point. We compare the code performance against the
legacy implementations it is based on, and find a 10 − 100× speed up, as well as significantly
improved memory efficiency, due to several built-in optimizations.

As a companion to this paper, Ha et al. (2024) demonstrates the capabilities of aweSOM in
analyzing the physics of plasma turbulence. Detailed instructions on how to install, test, and
replicate the results of the paper are available in the online documentation. Also included in
the documentation is an example of applying aweSOM to the Iris dataset (Fisher, 1936).

Statement of need

The self-organizing map algorithm
A SOM algorithm is an unsupervised ML technique that excels at dimensionality reduction,
clustering, and classification tasks. It consists of a 2-dimensional (2D) lattice of nodes. Each
node contains a weight vector that matches the dimensionality of the input data. A SOM
performs clustering by adapting the weight vectors of nodes, progressively reshaping the lattice’s
topology to match the intrinsic clustering of the input data. In this manner, a SOM lattice
can capture multidimensional correlations in the input data.

SOM is commonly used in various real-world applications, such as in the financial sector (e.g.,
Alshantti & Rasheed, 2021; Pei et al., 2023), in environmental surveys (e.g., Alvarez-Guerra et

Ha et al. (2025). aweSOM: a CPU/GPU-accelerated Self-organizing Map and Statistically Combined Ensemble Framework for Machine-learning
Clustering Analysis. Journal of Open Source Software, 10(108), 7613. https://doi.org/10.21105/joss.07613.

1

https://orcid.org/0000-0001-6600-2517
https://orcid.org/0000-0002-3226-4575
https://orcid.org/0000-0002-2685-2434
https://doi.org/10.21105/joss.07613
https://github.com/openjournals/joss-reviews/issues/7613
https://github.com/tvh0021/aweSOM
https://doi.org/10.5281/zenodo.15098625
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/apizzuto
https://github.com/Abinashbunty
https://creativecommons.org/licenses/by/4.0/
https://awesom.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.07613


al., 2008; Li et al., 2020), in medical technology (e.g., Hautaniemi et al., 2003; Kawaguchi et
al., 2024), among others. aweSOM is originally developed to be used in analyzing astrophysical
simulations, but can be applied to a wide variety of real-world data.

POPSOM

We base the SOM module of aweSOM on POPSOM (Hamel, 2019; Yuan, 2018), a R-based SOM
model. POPSOM was developed as a single-threaded, stochastic training algorithm with built-in
visualization capabilities. However, due to its single-threaded nature, the algorithm does not
scale well with large datasets. When 𝑁 ≳ 106, POPSOM is often unable to complete the training
process as the dimensionality of the input data increases due to its much higher memory usage.
As an example, we generated a mock dataset with 𝑁 = 106 and 𝐹 = 6 dimensions, then
trained it on a lattice of 𝑋 = 63, and 𝑌 = 32, where 𝑋,𝑌 are the dimensions of the lattice,
using one Intel Icelake node with 64 cores and 1 TB memory. POPSOM completed the training
in ≈ 2200 s and consumed ≈ 600 GB of system memory at its peak.

Rewriting POPSOM into aweSOM

To combat the long training time and excessive memory usage, we rewrite POPSOM with multiple
optimizations/parallelizations. We replaced legacy code with modern NumPy functions for
updating the lattice (a 3D array) and eliminated the use of pandas DataFrames (The pandas
development team, 2024), which consume significantly more memory. The weight vector
modifications in the DataFrame were also less efficient compared to the NumPy arrays used in
aweSOM. Furthermore, for the steps where parallelization could be leveraged (such as when
the cluster labels are mapped to the lattice, then to the input data), we integrate Numba (Lam
et al., 2015) to take advantage of its Just-In-Time (JIT) compiler and simple parallelization
of loops. In the same example as above, aweSOM took ≈ 200 s and consumed ≈ 450 MB of
memory to complete the training and clustering. In addition to the ∼ 10× speedup, aweSOM is
also ∼ 103× more memory-efficient.

The left hand side of Figure 1 shows a graph of the performance between aweSOM and the legacy
POPSOM implementation over a range of 𝑁 and 𝐹, performed on one Intel Icelake compute node
with 64 CPU cores and 1 TB memory. While POPSOM initially performs slightly faster than
aweSOM for 𝑁 ≲ 104, this changes when 𝑁 exceeds 5 × 105, after that aweSOM consistently
outperforms POPSOM by approximately a factor of 10. Critically, POPSOM fails to complete
its clusters mapping for 𝑁 ≳ 106, 𝐹 > 4 because the memory buffer of the test node was
exceeded.

The statistically combined ensemble method
The statistically combined ensemble (SCE) method was developed by Bussov & Nättilä (2021)
to stack the result of multiple independent clustering realizations into a statically significant
set of clusters. This method represents a form of ensemble learning. Additionally, SCE can
also be used independently from the base SOM algorithm, and is compatible with any general
unsupervised classification algorithm.

The legacy SCE implementation

In its original version, the SCE was saved as a nested dictionary of boolean arrays, each of
which contains the spatial similarity index 𝑔 between cluster 𝐶 and cluster 𝐶′. The total
number of operations scales as 𝑁𝑅

𝐶 , where 𝑁𝐶 is the number of clusters in each realization,
and 𝑅 is the number of realizations. For example, in our use case involving plasma simulation
data (Ha et al., 2024), each SOM realization produces on average 7 clusters, and the SCE
analysis incorporates 36 realizations, resulting in approximately 736 ∼ 1030 array-to-array
comparisons.

Ha et al. (2025). aweSOM: a CPU/GPU-accelerated Self-organizing Map and Statistically Combined Ensemble Framework for Machine-learning
Clustering Analysis. Journal of Open Source Software, 10(108), 7613. https://doi.org/10.21105/joss.07613.

2

https://doi.org/10.21105/joss.07613


Integrating SCE into aweSOM with JAX

To mitigate this bottleneck, we rewrite the legacy SCE code with JAX (Bradbury et al., 2018)
to significantly enhance the performance of array-to-array comparisons (which are matrix
multiplications) by leveraging the GPU’s parallel-computing advantage over the CPU. We
implement this optimization by replacing the original nested dictionaries with data arrays.
Then, every instance of matrix operation using NumPy is converted to jax.numpy. Additionally,
we implement internal checks such that the SCE code automatically reverts to NumPy if
GPU-accelerated JAX is not available.

Similar to the SOM implementation, the SCE implementation in aweSOM demonstrates excellent
scalability as the number of data points increases. The right hand side of Figure 1 shows a
graph of the performance between the two implementations given 𝑅 = 20. At 𝑁 < 5 × 104,
the legacy code is faster due to the overhead from loading JAX and the JIT compiler. However,
aweSOM quickly exceeds the performance of the legacy code, and begins to approach its
maximum speed-up of ∼ 100× at 𝑁 ≳ 107 (performed on one NVIDIA A100-40GB GPU).
On the other hand, when running on CPU-only with NumPy, aweSOM consistently shows a 2×
speed improvement over the legacy code. Altogether, it is best to use aweSOM with Numpy when
𝑁 ≲ 105, and with JAX when 𝑁 ≳ 105.

Figure 1: Performance scaling for aweSOM vs. the legacy SOM (left) and SCE (right) implementation.
The top panels show the time for each implementation to complete analysis of 𝑁 number of data points.
On the right panel, the dotted line extending from the olive line shows linear extrapolations from the
data in order to estimate the speedup. The bottom panels show the ratio between the time taken by
the legacy code divided by the time taken by aweSOM. In the SOM analysis, we consider a dataset with
𝐹 = 6 and 𝐹 = 10 dimensions. In the SCE analysis, we test the scaling of both a GPU-accelerated
implementation (with JAX) and a CPU-only implementation (with NumPy).

Acknowledgements
The authors would like to thank Kaze Wong for the valuable input in setting up JAX for the
SCE analysis. The authors would also like to thank Shirley Ho and Lorenzo Sironi for the
useful discussions. TH acknowledges support from a pre-doctoral program at the Center for
Computational Astrophysics, which is part of the Flatiron Institute. JN is supported by an ERC
grant (ILLUMINATOR, 101114623). JD is supported by NASA through the NASA Hubble
Fellowship grant HST-HF2-51552.001-A, awarded by the Space Telescope Science Institute,

Ha et al. (2025). aweSOM: a CPU/GPU-accelerated Self-organizing Map and Statistically Combined Ensemble Framework for Machine-learning
Clustering Analysis. Journal of Open Source Software, 10(108), 7613. https://doi.org/10.21105/joss.07613.

3

https://doi.org/10.21105/joss.07613


which is operated by the Association of Universities for Research in Astronomy, Incorporated,
under NASA contract NAS5-26555. aweSOM was developed and primarily run at facilities
supported by the Scientific Computing Core at the Flatiron Institute. Research at the Flatiron
Institute is supported by the Simons Foundation.

References
Alshantti, A., & Rasheed, A. (2021). Self-organising map based framework for investigating

accounts suspected of money laundering. Frontiers in Artificial Intelligence, 4. https:
//doi.org/10.3389/frai.2021.761925

Alvarez-Guerra, M., González-Piñuela, C., Andrés, A., Galán, B., & Viguri, J. R. (2008).
Assessment of self-organizing map artificial neural networks for the classification of sediment
quality. Environment International, 34(6), 782–790. https://doi.org/10.1016/j.envint.2008.
01.006

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Bussov, M., & Nättilä, J. (2021). Segmentation of turbulent computational fluid dynamics
simulations with unsupervised ensemble learning. Signal Processing: Image Communication,
99, 116450. https://doi.org/10.1016/j.image.2021.116450

Fisher, R. A. (1936). Iris. UCI Machine Learning Repository. https://doi.org/10.24432/C56C76

Ha, T., Nättilä, J., Davelaar, J., & Sironi, L. (2024). Machine-learning characterization of
intermittency in plasma turbulence: Single and double sheet structures. https://arxiv.org/
abs/2410.01878

Hamel, L. (2019). VSOM: Efficient, Stochastic Self-organizing Map Training. In K. Arai, S.
Kapoor, & R. Bhatia (Eds.), Intelligent Systems and Applications (pp. 805–821). Springer
International Publishing. https://doi.org/10.1007/978-3-030-01057-7_60

Hautaniemi, S., Yli-Harja, O., Astola, J., Kauraniemi, P., Kallioniemi, A., Wolf, M., Ruiz, J.,
Mousses, S., & Kallioniemi, O.-P. (2003). Analysis and visualization of gene expression
microarray data in human cancer using self-organizing maps. Machine Learning, 52(1–2).
https://doi.org/10.1023/A:1023941307670

Kawaguchi, T., Ono, K., & Hikawa, H. (2024). Electroencephalogram-based facial gesture
recognition using self-organizing map. Sensors, 24(9). https://doi.org/10.3390/s24092741

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.
https://doi.org/10.1109/5.58325

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC.
https://doi.org/10.1145/2833157.2833162

Li, K., Sward, K., Deng, H., Morrison, J., Habre, R., Chiang, Y.-Y., Ambite, J.-L., Wilson,
J., & Eckel, S. (2020). Using dynamic time warping self-organizing maps to characterize
diurnal patterns in environmental exposures. https://doi.org/10.21203/rs.3.rs-87487/v1

Pei, D., Luo, C., & Liu, X. (2023). Financial trading decisions based on deep fuzzy self-
organizing map. Applied Soft Computing, 134, 109972. https://doi.org/10.1016/j.asoc.
2022.109972

The pandas development team. (2024). Pandas-dev/pandas: pandas (Version v2.2.3). Zenodo.
https://doi.org/10.5281/zenodo.13819579

Ha et al. (2025). aweSOM: a CPU/GPU-accelerated Self-organizing Map and Statistically Combined Ensemble Framework for Machine-learning
Clustering Analysis. Journal of Open Source Software, 10(108), 7613. https://doi.org/10.21105/joss.07613.

4

https://doi.org/10.3389/frai.2021.761925
https://doi.org/10.3389/frai.2021.761925
https://doi.org/10.1016/j.envint.2008.01.006
https://doi.org/10.1016/j.envint.2008.01.006
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1016/j.image.2021.116450
https://doi.org/10.24432/C56C76
https://arxiv.org/abs/2410.01878
https://arxiv.org/abs/2410.01878
https://doi.org/10.1007/978-3-030-01057-7_60
https://doi.org/10.1023/A:1023941307670
https://doi.org/10.3390/s24092741
https://doi.org/10.1109/5.58325
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.21203/rs.3.rs-87487/v1
https://doi.org/10.1016/j.asoc.2022.109972
https://doi.org/10.1016/j.asoc.2022.109972
https://doi.org/10.5281/zenodo.13819579
https://doi.org/10.21105/joss.07613


Vettigli, G. (2018). MiniSom: Minimalistic and NumPy-based implementation of the self
organizing map. https://github.com/JustGlowing/minisom/

Yuan, L. (2018). Implementation of Self-Organizing Maps with Python [University of Rhode
Island]. https://doi.org/10.23860/thesis-yuan-li-2018

Ha et al. (2025). aweSOM: a CPU/GPU-accelerated Self-organizing Map and Statistically Combined Ensemble Framework for Machine-learning
Clustering Analysis. Journal of Open Source Software, 10(108), 7613. https://doi.org/10.21105/joss.07613.

5

https://github.com/JustGlowing/minisom/
https://doi.org/10.23860/thesis-yuan-li-2018
https://doi.org/10.21105/joss.07613

	Summary
	Statement of need
	The self-organizing map algorithm
	POPSOM
	Rewriting POPSOM into aweSOM

	The statistically combined ensemble method
	The legacy SCE implementation
	Integrating SCE into aweSOM with JAX


	Acknowledgements
	References

