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Summary
Large Language Models (LLMs) have been observed to exhibit bias in numerous ways, potentially
creating or worsening outcomes for specific groups identified by protected attributes such as
sex, race, sexual orientation, or age. To help address this gap, we introduce langfair, an
open-source Python package that aims to equip LLM practitioners with the tools to evaluate
bias and fairness risks relevant to their specific use cases.1 The package offers functionality to
easily generate evaluation datasets, comprised of LLM responses to use-case-specific prompts,
and subsequently calculate applicable metrics for the practitioner’s use case. To guide in metric
selection, LangFair offers an actionable decision framework, discussed in detail in the project’s
companion paper, Bouchard (2024).

Statement of Need
Traditional machine learning (ML) fairness toolkits like AIF360 (Bellamy et al., 2018), Fairlearn
(Weerts et al., 2023), Aequitas (Saleiro et al., 2018) and others (Tensorflow, 2020; Vasudevan
& Kenthapadi, 2020; Wexler et al., 2019) have laid crucial groundwork. These toolkits offer
various metrics and algorithms that focus on assessing and mitigating bias and fairness through
different stages of the ML lifecycle. While the fairness assessments offered by these toolkits
include a wide variety of generic fairness metrics, which can also apply to certain LLM use
cases, they are not tailored to the generative and context-dependent nature of LLMs.2

LLMs are used in systems that solve tasks such as recommendation, classification, text
generation, and summarization. In practice, these systems try to restrict the responses of the
LLM to the task at hand, often by including task-specific instructions in system or user prompts.
When the LLM is evaluated without taking the set of task-specific prompts into account, the
evaluation metrics are not representative of the system’s true performance. Representing the
system’s actual performance is especially important when evaluating its outputs for bias and
fairness risks because they pose real harm to the user and, by way of repercussions, the system
developer.

Most evaluation tools, including those that assess bias and fairness risk, evaluate LLMs at the
model-level by calculating metrics based on the responses of the LLMs to static benchmark
datasets of prompts (Barikeri et al., 2021; Bartl et al., 2020; Dhamala et al., 2021; Felkner
et al., 2024; Gehman et al., 2020; Y. Huang et al., 2023; Kiritchenko & Mohammad, 2018;
Krieg et al., 2023; Levy et al., 2021; Li et al., 2020; Nadeem et al., 2020; Nangia et al., 2020;
Nozza et al., 2021; Parrish et al., 2022; Qian et al., 2022; Rudinger et al., 2018; Webster et al.,

1The repository for langfair can be found at https://github.com/cvs-health/langfair.
2The toolkits mentioned here offer fairness metrics for classification. In a similar vein, the recommendation

fairness metrics offered in FaiRLLM (Zhang et al., 2023) can be applied to ML recommendation systems as well
as LLM recommendation use cases.
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2018; Zhao et al., 2018) that do not consider prompt-specific risks and are often independent
of the task at hand. Holistic Evaluation of Language Models (HELM) (Liang et al., 2023),
DecodingTrust (Wang et al., 2023), and several other toolkits (Gao et al., 2024; Y. Huang et
al., 2024; Huggingface, 2022; Nazir et al., 2024; Srivastava et al., 2022) follow this paradigm.

LangFair complements the aforementioned frameworks because it follows a bring your own
prompts (BYOP) approach, which allows users to tailor the bias and fairness evaluation to their
use case by computing metrics using LLM responses to user-provided prompts. This addresses
the need for a task-based bias and fairness evaluation tool that accounts for prompt-specific
risk for LLMs.3

Furthermore, LangFair is designed for real-world LLM-based systems that require governance
audits. LangFair focuses on calculating metrics from LLM responses only, which is more
practical for real-world testing where access to internal states of model to retrieve embeddings
or token probabilities is difficult. An added benefit is that output-based metrics, which are
focused on the downstream task, have shown to be potentially more reliable than metrics
derived from embeddings or token probabilities (Delobelle et al., 2022; Goldfarb-Tarrant et al.,
2021).

Generation of Evaluation Datasets
The langfair.generator module offers two classes, ResponseGenerator and Counterfactual-
Generator, which aim to enable user-friendly construction of evaluation datasets for text
generation use cases.

ResponseGenerator class

To streamline generation of evaluation datasets, the ResponseGenerator class wraps an instance
of a langchain LLM and leverages asynchronous generation with asyncio. To implement,
users simply pass a list of prompts (strings) to the ResponseGenerator.generate_responses

method, which returns a dictionary containing prompts, responses, and applicable metadata.

CounterfactualGenerator class

In the context of LLMs, counterfactual fairness can be assessed by constructing counterfactual
input pairs (Bouchard, 2024; Gallegos et al., 2024), comprised of prompt pairs that mention
different protected attribute groups but are otherwise identical, and measuring the differences
in the corresponding generated output pairs. These assessments are applicable to use cases
that do not satisfy fairness through unawareness (FTU), meaning prompts contain mentions
of protected attribute groups. To address this, the CounterfactualGenerator class offers
functionality to check for FTU, construct counterfactual input pairs, and generate corresponding
pairs of responses asynchronously using a langchain LLM instance.4 Off the shelf, the FTU
check and creation of counterfactual input pairs can be done for gender and race/ethnicity,
but users may also provide a custom mapping of protected attribute words to enable this
functionality for other attributes as well.

Bias and Fairness Evaluations for Focused Use Cases
Following Bouchard (2024), evaluation metrics are categorized according to the risks they
assess (toxicity, stereotypes, counterfactual unfairness, and allocational harms), as well as

3Experiments in Wang et al. (2023) demonstrate that prompt content has substantial influence on the
likelihood of biased LLM responses.

4In practice, a FTU check consists of parsing use case prompts for mentions of protected attribute groups.
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the use case task (text generation, classification, and recommendation).5 Table 1 maps the
classes contained in the langfair.metrics module to these risks. These classes are discussed
in detail below.

Class Risk Assessed Applicable Tasks
ToxicityMetrics Toxicity Text generation
StereotypeMetrics Stereotypes Text generation
CounterfactualMetrics Counterfactual fairness Text generation
RecommendationMetrics Counterfactual fairness Recommendation
ClassificationMetrics Allocational harms Classification

Table 1 : Classes for Computing Evaluation Metrics in langfair.metrics

Toxicity Metrics

The ToxicityMetrics class facilitates simple computation of toxicity metrics from a user-
provided list of LLM responses. These metrics leverage a pre-trained toxicity classifier that
maps a text input to a toxicity score ranging from 0 to 1 (Gehman et al., 2020; Liang et al.,
2023). For off-the-shelf toxicity classifiers, the ToxicityMetrics class provides four options:
two classifiers from the detoxify package, roberta-hate-speech-dynabench-r4-target from
the evaluate package, and toxigen available on HuggingFace.6 For additional flexibility, users
can specify an ensemble of the off-the-shelf classifiers offered or provide a custom toxicity
classifier object.

Stereotype Metrics

To measure stereotypes in LLM responses, the StereotypeMetrics class offers two categories
of metrics: metrics based on word cooccurrences and metrics that leverage a pre-trained
stereotype classifier. Metrics based on word cooccurrences aim to assess relative cooccur-
rence of stereotypical words with certain protected attribute words. On the other hand,
stereotype-classifier-based metrics leverage the wu981526092/Sentence-Level-Stereotype-

Detector classifier available on HuggingFace (Zekun et al., 2023) and compute analogs of the
aforementioned toxicity-classifier-based metrics (Bouchard, 2024).7

Counterfactual Fairness Metrics for Text Generation

The CounterfactualMetrics class offers two groups of metrics to assess counterfactual fairness
in text generation use cases. The first group of metrics leverage a pre-trained sentiment classifier
to measure sentiment disparities in counterfactually generated outputs (see P.-S. Huang et
al. (2020) for further details). This class uses the vaderSentiment classifier by default but
also gives users the option to provide a custom sentiment classifier object.8 The second group
of metrics addresses a stricter desiderata and measures overall similarity in counterfactually
generated outputs using well-established text similarity metrics (Bouchard, 2024).

Counterfactual Fairness Metrics for Recommendation

The RecommendationMetrics class is designed to assess counterfactual fairness for recommen-
dation use cases. Specifically, these metrics measure similarity in generated lists of recommen-
dations from counterfactual input pairs. Metrics may be computed pairwise (Bouchard, 2024),
or attribute-wise (Zhang et al., 2023).

5Note that text generation encompasses all use cases for which output is text, but does not belong to a
predefined set of elements (as with classification and recommendation).

6https://github.com/unitaryai/detoxify; https://github.com/huggingface/evaluate; https://github.com/mi-
crosoft/TOXIGEN

7https://huggingface.co/wu981526092/Sentence-Level-Stereotype-Detector
8https://github.com/cjhutto/vaderSentiment
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Fairness Metrics for Classification

When LLMs are used to solve classification problems, traditional machine learning fairness
metrics may be applied, provided that inputs can be mapped to a protected attribute. To this
end, the ClassificationMetrics class offers a suite of metrics to address unfair classification
by measuring disparities in predicted prevalence, false negatives, or false positives. When
computing metrics using the ClassificationMetrics class, the user may specify whether to
compute these metrics as pairwise differences (Bellamy et al., 2018) or pairwise ratios (Saleiro
et al., 2018).

Semi-Automated Evaluation

AutoEval class

To streamline assessments for text generation use cases, the AutoEval class conducts a multi-
step process (each step is described in detail above) for a comprehensive fairness assessment.
Specifically, these steps include metric selection (based on whether FTU is satsified), evaluation
dataset generation from user-provided prompts with a user-provided LLM, and computation
of applicable fairness metrics. To implement, the user is required to supply a list of prompts
and an instance of langchain LLM. Below we provide a basic example demonstrating the
execution of AutoEval.evaluate with a gemini-pro instance.9

from langchain_google_vertexai import ChatVertexAI

from langfair.auto import AutoEval

llm = ChatVertexAI(model_name='gemini-pro')

auto_object = AutoEval(prompts=prompts, langchain_llm=llm)

results = await auto_object.evaluate()

Under the hood, the AutoEval.evaluate method 1) checks for FTU, 2) generates
responses and counterfactual responses (if FTU is not satisfied), and 3) calculates
applicable metrics for the use case.10 This process flow is depicted in Figure 1.

Figure 1:Flowchart of internal design of Autoeval.evaluate method
9Note that this example assumes the user has already set up their VertexAI credentials and sampled a list of

prompts from their use case prompts.
10The ‘AutoEval‘ class is designed specifically for text generation use cases. Applicable metrics include toxicity

metrics, stereotype metrics, and, if FTU is not satisfied, counterfactual fairness metrics.
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