
rdata: A Python library for R datasets
Carlos Ramos-Carreño 1 and Tuomas Rossi 2

1 Universidad Autónoma de Madrid, Spain 2 CSC – IT Center for Science Ltd., Finland
DOI: 10.21105/joss.07540

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @has2k1
• @rich-iannone

Submitted: 27 October 2024
Published: 01 December 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Research work usually requires the analysis and processing of data from different sources.
Traditionally in statistical computing, the R language has been widely used for this task, and
a huge amount of datasets have been compiled in the Rda and Rds formats, native to this
programming language. As these formats contain internally the representation of R objects,
they cannot be directly used from Python, another widely used language for data analysis and
processing. The library rdata allows to load and convert these datasets to Python objects,
without the need of exporting them to other intermediate formats which may not keep all
the original information. This library has minimal dependencies, ensuring that it can be used
in contexts where an R installation is not available. The capability to write data in Rda and
Rds formats is also under development. Thus, the library rdata facilitates data interchange,
enabling the usage of the same datasets in both languages (e.g. for reproducibility, comparisons
of results against methods in both languages, or the creation of complex processing pipelines
that involve steps in both R and Python).

Statement of need
The datasets of the R programming language, such as those from the CRAN repository, are
often stored in the R specific formats Rda and Rds. In Python, there were a few packages
that could parse these file formats, albeit all of them presented some limitations.

The package rpy2 (Gautier, 2024) can be used to interact with R from Python. This includes
the ability to load data in the Rda and Rds formats, and to convert these data to equivalent
Python objects. Although this is arguably the best package to achieve interaction between
both languages, it has many disadvantages if one wants to use it just to load R datasets. In
the first place, the package requires an R installation, as it relies in launching an R interpreter
and communicating with it. Secondly, launching R just to load data is inefficient, both in time
and memory. Finally, this package inherits the GPL license from the R language, which is not
compatible with most Python packages, typically released under more permissive licenses.

The package pyreadr (Fajardo, 2024) also provides functionality to read and write some R
datasets. It relies in the C library librdata in order to perform the parsing of the R data
files. This adds an additional dependency from C building tools, and requires that the package
is compiled for all the desired operating systems. Moreover, this package is limited by the
functionalities available in librdata, which at the moment of writing does not include the
parsing of common objects such as R lists and S4 objects. The license can also be a problem,
as it is part of the GPL family and does not allow commercial use.

As existing solutions were unsuitable for our needs, the package rdata was developed to parse
data in the Rda and Rds formats. This is a small, extensible, efficient, and very complete
implementation in pure Python of an R data parser, that is able to read and convert most
datasets in the CRAN repository to equivalent Python objects, such as the built-in types of the
Python standard library, NumPy arrays (Harris et al., 2020), or Pandas dataframes (McKinney,

Ramos-Carreño, & Rossi. (2024). rdata: A Python library for R datasets. Journal of Open Source Software, 9(104), 7540. https://doi.org/10.
21105/joss.07540.

1

https://orcid.org/0000-0003-2566-7058
https://orcid.org/0000-0002-8713-4559
https://doi.org/10.21105/joss.07540
https://github.com/openjournals/joss-reviews/issues/7540
https://github.com/vnmabus/rdata
https://doi.org/10.5281/zenodo.10776842
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/has2k1
https://github.com/rich-iannone
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07540
https://doi.org/10.21105/joss.07540


2010; The Pandas Development Team, 2024). It has a permissive license and can be extended
to support additional conversions from custom R classes.

The package rdata has been designed as a pure Python package with minimal dependencies,
so that it can be easily integrated inside other libraries and applications. It currently powers
the functionality offered in the scikit-datasets package (Díaz-Vico & Ramos-Carreño, 2023)
for loading datasets from the CRAN repository of R packages. This functionality is used for
fetching the functional datasets provided in the scikit-fda library (Ramos-Carreño et al.,
2024), whose development was the main reason for the creation of the rdata package itself.

Features
The package rdata is intended to be both flexible and easy to use. In order to be flexible, the
parsing of the R data file formats and the conversion of the parsed structures to appropriate
Python objects have been splitted in two steps. This allows advanced users to perform custom
conversions without losing information. Most users, however, will want to use the default
conversion routine, which attempts to convert data to a standard Python representation which
preserves most part of the information. Converting an Rda dataset to Python objects using
the package rdata can be easily done as follows:

import rdata

converted = rdata.read_rda("dataset.rda")

This is equivalent to the following code, in which the two steps are performed separately:

import rdata

parsed = rdata.parser.parse_file("dataset.rda")

converted = rdata.conversion.convert(parsed)

The function parse_file() of the parser module is used to parse Rda and Rds files, returning
a tree-like structure of Python objects that contains a representation of the basic R objects
conforming the dataset. The function convert() of the conversion module transforms that
representation to the final Python objects, such as lists, dictionaries or dataframes, that users
can manipulate.

Advanced users will probably require loading datasets which contain non standard S3 or S4
classes, translating each of them to a custom Python class. This can be achieved using
rdata by creating a constructor function that receives the converted object representation
and its attributes, and returns a Python object of the desired type. As an example, consider
the following short code that constructs a Pandas (The Pandas Development Team, 2024)
Categorical object from the internal representation of an R factor.

import pandas

def factor_constructor(obj, attrs):

values = [attrs['levels'][i - 1] if i >= 0 else None for i in obj]

return pandas.Categorical(values, attrs['levels'], ordered=False)

Then, a dictionary containing as keys the original class names to convert and as values the
constructor functions can be passed as the constructor_dict parameter of the read_rda() (or
convert() if we do it in two steps) function. In the previous example, this could be done using
the following code:

converted = rdata.read_rda(

"dataset.rda",

constructor_dict={"factor": factor_constructor},

)

Ramos-Carreño, & Rossi. (2024). rdata: A Python library for R datasets. Journal of Open Source Software, 9(104), 7540. https://doi.org/10.
21105/joss.07540.

2

https://doi.org/10.21105/joss.07540
https://doi.org/10.21105/joss.07540


When the default conversion routine is being executed, if an object belonging to an S3 or S4
class is found, the appropriate constructor will be called passing to it the partially constructed
object. If no constructor is available for that class, a warning will be emitted and the constructor
of the most immediate parent class available will be called. If there are no constructors for any
of the parent classes, the basic underlying Python object will be left without transformation.

By default, a dictionary named DEFAULT_CLASS_MAP is passed to convert() including construc-
tors for commonly used classes, such as data.frame, ordered or the aforementioned factor.
In case the user desires different conversions for basic R objects, it would be enough to create a
subclass of the Converter class. Several utility functions, such as the routines convert_char()
and convert_list(), are exposed by the conversion module in order for users to be able to
reuse them for that purpose.

Ongoing work
To broaden the utility of the rdata library for data processing pipelines with steps in both R
and Python, we are currently extending the library with the capability to write compatible
Python objects to Rda and Rds files. As an example, such a pipeline is present in the Hmsc-
HPC code (Rahman et al., 2024). The continuous development of this code has also been
driving the ongoing work on the writing functionality of the rdata library. The writing of
Rda and Rds files is implemented as a two-step process similar to reading: first, the Python
object is converted to the tree-like intermediate representation used in parsing, and then this
intermediate representation is written to a file of the chosen format. Currently, the writing
functionality supporting common types is available in the development branch of the rdata

library.

Acknowledgements
This work has received funding from the Spanish Ministry of Education and Innovation, projects
PID2019-106827GB-I00 / AEI / 10.13039/501100011033 and PID2019-109387GB-I00, from an
FPU grant (Formación de Profesorado Universitario) from the Spanish Ministry of Science, Inno-
vation and Universities(MICIU) with reference FPU18/00047, and from the European Union’s
Horizon Europe research and innovation programme under grant agreement No 101057437
(BioDT project, https://doi.org/10.3030/101057437). Views and opinions expressed are those
of the author(s) only and do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the European Commission can be
held responsible for them. The authors gratefully acknowledge the use of the computational
facilities provided by Centro de Computación Científica (CCC) at Universidad Autónoma de
Madrid and by CSC – IT Center for Science, Finland.

References
Díaz-Vico, D., & Ramos-Carreño, C. (2023). scikit-datasets: Scikit-learn-compatible datasets.

https://doi.org/10.5281/zenodo.6383047

Fajardo, O. (2024). Pyreadr. Zenodo. https://doi.org/10.5281/zenodo.7110169

Gautier, L. (2024). Rpy2: R in Python. GitHub. https://github.com/rpy2/rpy2

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Ramos-Carreño, & Rossi. (2024). rdata: A Python library for R datasets. Journal of Open Source Software, 9(104), 7540. https://doi.org/10.
21105/joss.07540.

3

https://doi.org/10.3030/101057437
https://doi.org/10.5281/zenodo.6383047
https://doi.org/10.5281/zenodo.7110169
https://github.com/rpy2/rpy2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.21105/joss.07540
https://doi.org/10.21105/joss.07540


McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

Rahman, A. U., Tikhonov, G., Oksanen, J., Rossi, T., & Ovaskainen, O. (2024). Accelerating
joint species distribution modelling with Hmsc-HPC by GPU porting. PLOS Computational
Biology, 20(9), e1011914. https://doi.org/10.1371/journal.pcbi.1011914

Ramos-Carreño, C., Torrecilla, J. L., Carbajo-Berrocal, M., Marcos, P., & Suárez, A. (2024).
Scikit-fda: A Python Package for Functional Data Analysis. Journal of Statistical Software,
109, 1–37. https://doi.org/10.18637/jss.v109.i02

The Pandas Development Team. (2024). pandas-dev/pandas: pandas (latest). Zenodo.
https://doi.org/10.5281/zenodo.3509134

Ramos-Carreño, & Rossi. (2024). rdata: A Python library for R datasets. Journal of Open Source Software, 9(104), 7540. https://doi.org/10.
21105/joss.07540.

4

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1371/journal.pcbi.1011914
https://doi.org/10.18637/jss.v109.i02
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.21105/joss.07540
https://doi.org/10.21105/joss.07540

	Summary
	Statement of need
	Features
	Ongoing work
	Acknowledgements
	References

