
DiffOpt: Parallel optimization of Jax models
Alan N. Pearl 1, Gillian D. Beltz-Mohrmann 1, and Andrew P. Hearin 1

1 HEP Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
DOI: 10.21105/joss.07522

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @landreman
• @ewu63

Submitted: 15 October 2024
Published: 20 December 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
diffopt is a Python package which facilitates in the optimization of data-parallelized, differ-
entiable models using the Jax (Bradbury et al., 2018) framework. It is composed of three
subpackages, multigrad, kdescent, and multiswarm. Leveraging MPI (Message Passing
Interface), multigrad efficiently sums and propagates gradients of custom-defined summary
statistics across processors and computing nodes. kdescent utilizes mini-batched kernel
density estimates to perform stochastic gradient descent to fit a full model distribution to
an N-dimensional training dataset. A massively parallelizable implementation of particle
swarm optimization (PSO) is provided by multiswarm, enabling global optimization of even
high-dimensional, non-convex loss surfaces. Our simple yet flexible design makes these meth-
ods applicable to a wide variety of problems requiring solutions scalable to large amounts
of data through both gradient- and non-gradient-based optimization techniques. Visit our
documentation page to learn the usage.

Statement of Need
In and beyond the field of cosmology, parameterized models can describe complex systems,
provided that the parameters have been tuned adequately to fit the model to observational
data. Fitting capabilities can be increased dramatically by gradient-based techniques, partic-
ularly in high-dimensional parameter spaces. Existing gradient descent tools in Jax do not
inherently support data-parallelism with MPI, creating a speed and memory bottleneck for
such computations.

multigrad addresses this need by providing an easy-to-use interface for implementing data-
parallelized models. It handles the MPI reductions as well as the mathematical complexities
involved in propagating chain rules required to compute the gradient of the loss, which
is a function of parallelized summary statistics, which are in turn functions of the model
parameters. At the same time, it is very flexible in that it allows users to define their own
functions to compute their summary statistics and loss. As a result, this package can enable
scalability through parallelization to the optimization routine of nearly any big-data model.
kdescent and multiswarm each provide powerful fitting tools which are fully compatible with
the parallelization framework laid out by multigrad.

Past efforts have already been made towards parallelization of Jax (mpi4jax, Häfner & Vicentini,
2021), parallel gradient descent (e.g., Gray et al., 2019), and parallel PSO (Blank & Deb, 2020;
Li & Wada, 2005). Our approach combines many of these features and more into one easy-
to-use, documented Python module with all the tools to optimize arbitrarily complex models
that the user has implemented in the Jax framework. Additionally, while the fundamental MPI
reductions available through mpi4jax are generally sufficient, our multigrad procedure provides
significant convenience for problems in which complex summary statistics are computed in
parallel before being applied to a differentiable loss function.

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 9(104), 7522. https://doi.org/10.21105/joss.
07522.

1

https://orcid.org/0000-0001-9820-9619
https://orcid.org/0000-0002-4392-8920
https://orcid.org/0000-0003-2219-6852
https://doi.org/10.21105/joss.07522
https://github.com/openjournals/joss-reviews/issues/7522
https://github.com/AlanPearl/diffopt
https://doi.org/10.5281/zenodo.14291795
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/landreman
https://github.com/ewu63
https://creativecommons.org/licenses/by/4.0/
https://diffopt.readthedocs.io
https://doi.org/10.21105/joss.07522
https://doi.org/10.21105/joss.07522

Method

multigrad

multigrad allows the user to implement a loss term, which is a function of summary statistics,
which are functions of parameters, 𝐿(⃗𝑦(⃗𝑥)) where the summary statistics are summed over
multiple MPI-linked processes: ⃗𝑦 = ∑𝑖 ⃗𝑦(𝑖) where 𝑖 is the index of each process. In this
section, we will derive the gradient of the loss ∇⃗𝐿 with respect to the parameters and as a
sum of terms that each process can compute independently.

We will begin from the definition of the multivariate chain rule,

𝜕𝐿
𝜕𝑥𝑗

= ∑
𝑘

𝜕𝐿
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑥𝑗

where 𝜕𝑦𝑘 = ∑𝑖 𝜕𝑦𝑘(𝑖). By pulling out the MPI summation over 𝑖,

𝜕𝐿
𝜕𝑥𝑗

= ∑
𝑖

∑
𝑘

𝜕𝐿
𝜕𝑦𝑘

𝜕𝑦𝑘(𝑖)
𝜕𝑥𝑗

and by rewriting this as vector-matrix multiplication,

⃗∇𝑥𝐿 = ∑
𝑖
(⃗∇𝑦𝐿)𝑇𝐽(𝑖)

we can clearly identify that each process has to perform a vector-Jacobian product (VJP),
where 𝐽(𝑖) is the Jacobian matrix such that 𝐽𝑘𝑗(𝑖) =

𝜕𝑦𝑘(𝑖)
𝜕𝑥𝑗

. Fortunately, this is a computation
that Jax can perform very efficiently, without the need to explicitly calculate the full Jacobian
matrix by making use of the jax.vjp feature, saving us orders of magnitude of time and
memory requirements.

kdescent

Mini-batching techniques often compute the loss function with only a small subset of the
training data taken into account. In kdescent, the density of the full training dataset is
measured around a “mini-batched” sample of kernel centers, which are drawn from points in
the training data. With each iteration of stochastic gradient descent, a new sample of (20 by
default) kernels is selected at positions ⃗𝜇𝑘 for each kernel 𝑘.

Using the compare_kde_counts method, the “true” and “model” counts are each computed
around each kernel using the same equation below, where 𝑥𝑖 is the 𝑖th point in the training
data or model data, respectively:

𝑁𝑘 = ∑
𝑖

𝒩(⃗𝑥𝑖 | ⃗𝜇𝑘, Σ)

where 𝒩 is the multivariate-normal distribution with mean ⃗𝜇𝑘 and covariance matrix Σ (where
the covariance is calculated using Scott’s rule for kernel density estimation of the training
dataset; Scott (1992)). It is then up to the user to define their own loss function comparing
the counts of 𝑁𝑘,truth to 𝑁𝑘,model. Note that these are extrinsic quantities (as is necessary to
be parallelizable through multigrad) which can be reduced to intrinsic quantities for PDF-level
comparisons by simply dividing by the total number of training and model data, respectively.

The analogous compare_fourier_counts method can provide additional loss terms relating
to differences in the empirical characteristic function (ECF; Cramer (1954)). It is evaluated

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 9(104), 7522. https://doi.org/10.21105/joss.
07522.

2

https://jax.readthedocs.io/en/latest/_autosummary/jax.vjp.html
https://doi.org/10.21105/joss.07522
https://doi.org/10.21105/joss.07522

at a random sample of (20 by default) Fourier-space positions, ⃗�̃�𝑘, for both the “true” and
“model” Fourier counts:

�̃�𝑘 = ∑
𝑖

exp(𝑖 ⃗�̃�𝑘 ⋅ ⃗𝑥𝑖).

multiswarm

Particle swarm optimization (PSO; Kennedy & Eberhart (1995)) is a highly exploratory fitting
algorithm in which a set of (100 by default) particles are initialized with randomized velocities
and positions with Latin-Hypercube spacing over the loss function’s parameter space. Each
particle has an inertial weight (𝑤𝐼 = 1 by default), a cognitive weight, (𝑤𝐶 = 0.21 by default),
and a social weight, (𝑤𝑆 = 0.07 by default). The default parameters have been hand-tuned
to optimize parameter exploration performed by 100 particles before converging over roughly
100 time steps in a 4D Ackley loss function demonstrated in our documentation.

Within each PSO iteration: (1) Each particle’s position is updated according to its current
velocity 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖. (2) Positions and velocities are then reflected accordingly across any
axes in which they have left the boundaries, if applicable. (3) Finally, the particle’s velocity
is slightly pulled in the direction of its personal best 𝑥PB and global best 𝑥GB loss found,
according to the following equation:

𝑣𝑖+1 = 𝑤𝐼𝑣𝑖 +𝑤𝐶(𝑥PB − 𝑥𝑖+1) + 𝑤𝑆(𝑥GB − 𝑥𝑖+1)

The multiswarm implementation of PSO allows users to conveniently distribute the loss function
computations performed by each particle across MPI ranks. Particles are evenly distributed
across all ranks by default, but users needing further control can provide a custom MPI
communicator object, and/or specify the ranks_per_particle argument to manually control
intra-particle parallelization.

Science Use Case
diffopt was developed to aid in parameter optimization for high-dimensional differentiable
models applied to large datasets. It has enabled the scaling to cosmological volumes of a
differentiable forward modeling pipeline which predicts galaxy properties based on a simulated
dark matter density field (Diffmah: Hearin et al. (2021); Diffstar: Alarcon et al. (2023);
DSPS: Hearin et al. (2023)). Ongoing research is currently utilizing diffopt to optimize the
parameters of this pipeline to reproduce observed galaxy properties (e.g. Beltz-Mohrmann et
al. in prep.). More broadly, diffopt has useful applications for any scientific research that
focuses on fitting high-dimensional models to large datasets and would benefit from computing
parameter gradients in parallel.

Acknowledgements
This work was supported in part by the OpenUniverse effort, which is funded by NASA under
JPL Contract Task 70-711320, ‘Maximizing Science Exploitation of Simulated Cosmological
Survey Data Across Surveys’, and by the DOE contract DE-AC02-06CH11357. We gratefully
acknowledge the HPC resources operated by the Laboratory Computing Resource Center at
Argonne National Laboratory.

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 9(104), 7522. https://doi.org/10.21105/joss.
07522.

3

https://diffopt.readthedocs.io/en/latest/multiswarm/intro.html
https://doi.org/10.21105/joss.07522
https://doi.org/10.21105/joss.07522

References
Alarcon, A., Hearin, A. P., Becker, M. R., & Chaves-Montero, J. (2023). Diffstar: a

fully parametric physical model for galaxy assembly history. 518(1), 562–584. https:
//doi.org/10.1093/mnras/stac3118

Blank, J., & Deb, K. (2020). Pymoo: Multi-objective optimization in Python. IEEE Access, 8,
89497–89509. https://doi.org/10.1109/access.2020.2990567

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Cramer, H. (1954). Mathematical methods of statistics. Princeton Univ. Press. https:
//cds.cern.ch/record/107581

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., & Naylor, B. A. (2019).
OpenMDAO: An open-source framework for multidisciplinary design, analysis, and op-
timization. Structural and Multidisciplinary Optimization, 59(4), 1075–1104. https:
//doi.org/10.1007/s00158-019-02211-z

Häfner, D., & Vicentini, F. (2021). mpi4jax: Zero-copy MPI communication of JAX arrays.
Journal of Open Source Software, 6(65), 3419. https://doi.org/10.21105/joss.03419

Hearin, A. P., Chaves-Montero, J., Alarcon, A., Becker, M. R., & Benson, A. (2023). DSPS:
Differentiable stellar population synthesis. 521(2), 1741–1756. https://doi.org/10.1093/
mnras/stad456

Hearin, A. P., Chaves-Montero, J., Becker, M. R., & Alarcon, A. (2021). A Differentiable
Model of the Assembly of Individual and Populations of Dark Matter Halos. The Open
Journal of Astrophysics, 4(1), 7. https://doi.org/10.21105/astro.2105.05859

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95
- International Conference on Neural Networks, 4, 1942–1948 vol.4. https://doi.org/10.
1109/ICNN.1995.488968

Li, B., & Wada, K. (2005). Parallelizing particle swarm optimization. PACRIM. 2005 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing, 2005.,
288–291. https://doi.org/10.1109/PACRIM.2005.1517282

Scott, D. W. (1992). Multivariate density estimation: Theory, practice, and visualization.
Wiley. https://doi.org/10.2307/1270280

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 9(104), 7522. https://doi.org/10.21105/joss.
07522.

4

https://doi.org/10.1093/mnras/stac3118
https://doi.org/10.1093/mnras/stac3118
https://doi.org/10.1109/access.2020.2990567
http://github.com/google/jax
http://github.com/google/jax
https://cds.cern.ch/record/107581
https://cds.cern.ch/record/107581
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.21105/joss.03419
https://doi.org/10.1093/mnras/stad456
https://doi.org/10.1093/mnras/stad456
https://doi.org/10.21105/astro.2105.05859
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/PACRIM.2005.1517282
https://doi.org/10.2307/1270280
https://doi.org/10.21105/joss.07522
https://doi.org/10.21105/joss.07522

	Summary
	Statement of Need
	Method
	multigrad
	kdescent
	multiswarm

	Science Use Case
	Acknowledgements
	References

