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Summary
Linear algebra and inverse problem theory are fundamental to many algorithms in signal
processing, image processing, geophysics, and remote sensing. This paper introduces PyLops-
MPI, an extension of the PyLops framework designed to enable distributed computing in the
solution of large-scale inverse problems in Python. By leveraging the Message Passing Interface
(MPI) standard, this library effectively harnesses the computational power of multiple nodes,
allowing users to scale their inverse problems efficiently with minimal changes compared to
their single-node PyLops code.

Statement of need
As scientific datasets grow and the demand for higher resolution increases, the use of distributed
computing in matrix-free linear algebra becomes crucial. Models and datasets can in fact
easily exceed the memory of a single machine—making it difficult to perform computations
efficiently and accurately at the same time. Nevertheless, many linear operators in scientific
inverse problems can be decomposed into a series of computational blocks that are well-suited
for parallelization.

When addressing distributed inverse problems, we identify three distinct families of problems:

1. Fully distributed models and data: Both model and data are split across nodes, with
each node processing its own portion of the model and data. This leads to minimal
communication, mainly when performing dot products in the solver or in the regularization
terms.

2. Distributed data, model available on all nodes: Data is distributed across nodes, whilst
the model is available on all nodes. Communication happens during the adjoint pass to
sum models and in the solver for data vector operations.

3. Model and data available on all nodes: All nodes have identical copies of the data and
model. Communication only happens within the operator, with no communication in
solver needed.

MPI for Python (mpi4py (Dalcin & Fang, 2021)) provides Python bindings for the MPI standard,
allowing applications to leverage multiple processors. Projects like mpi4py-fft (Mortensen et
al., 2019), mcdc (Morgan et al., 2024), and mpi4jax (Häfner & Vicentini, 2021) utilize mpi4py
to provide distributed computing capabilities. Similarly, PyLops-MPI, which is built on top
of PyLops (Ravasi & Vasconcelos, 2020), leverages mpi4py to solve large-scale problems in
a distributed fashion. Its intuitive API provide functionalities to scatter and broadcast data
and model vector across nodes and allows various mathematical operations (e.g., summation,
subtraction, norms) to be performed. Additionally, a suite of MPI-powered linear operators and
solvers is offered, and its flexible design eases the integration of custom operators and solvers.

Babbar et al. (2025). PyLops-MPI - MPI Powered PyLops with mpi4py. Journal of Open Source Software, 10(105), 7512. https://doi.org/10.
21105/joss.07512.

1

https://orcid.org/0000-0002-7203-7641
https://orcid.org/0000-0003-0020-2721
https://orcid.org/0000-0002-0741-6602
https://doi.org/10.21105/joss.07512
https://github.com/openjournals/joss-reviews/issues/7512
https://github.com/PyLops/pylops-mpi
https://doi.org/10.5281/zenodo.14539781
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/gonsie
https://github.com/mikaem
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07512
https://doi.org/10.21105/joss.07512


Software Framework
PyLops-MPI is designed to tackle large-scale linear inverse problems that are difficult to
solve using a single process (due to either extremely high computational cost or memory
requirements).

Figure 1: Software framework representation of the PyLops-MPI API.

Fig. 1 illustrates the main components of the library, emphasizing the relationship between the
DistributedArray class, stacked operators, and MPI-powered solvers.

DistributedArray
The pylops_mpi.DistributedArray class serves as the fundamental array class, enabling both
partitioning and broadcasting of large NumPy (Harris et al., 2020) or CuPy (Okuta et al.,
2017) arrays across multiple processes. It also supports basic math operations such as addition
(+), multiplication (*), dot-product (@). Finally, multiple DistributedArray objects can be
stacked using pylops_mpi.StackedDistributedArray for further operations.

HStack, VStack, BlockDiag Operators
PyLops facilitates the combinations of multiple linear operators via horizontal, vertical, or
diagonal stacking. PyLops-MPI provides distributed versions of these operations. Examples
include pylops_mpi.MPIBlockDiag, which applies different operators in parallel on separate
portions of the model and data, pylops_mpi.MPIVStack, which applies multiple operators in
parallel to the whole model, with its adjoint applies the adjoint of each individual operator
to portions of the data vector and sums the individual output, and pylops_mpi.MPIHStack,
which is the adjoint of MPIVStack.

Halo Exchange
PyLops-MPI uses halo exchange to transfer portions of the model and data between ranks.
Users should ensure consistent local data shapes to avoid extra communication during matrix-
vector products. If shapes differ, the operator exchanges boundary data (“ghost cells”) between
neighboring processes, aligning shapes to enable efficient local computations and minimize
overhead.
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MPI-powered Solvers
PyLops-MPI offers a small subset of PyLops linear solvers, which can deal with
pylops_mpi.DistributedArray and pylops_mpi.StackedDistributedArray objects.
These solvers utilize the mathematical operations implemented in these classes and call the
operator’s forward and adjoint passes.

Use Cases
Here we present three use cases in geophysical inverse problems that correspond to the
previously mentioned families of problems:

• Seismic Post-Stack Inversion can be used to characterize the subsurface (Ravasi &
Birnie, 2021) from seismic data. In 3D applications, when both the model and data are
three-dimensional arrays, PyLops-MPI distributes one spatial axis across different ranks.
Each rank therefore processes a subset of the entire data and model. Communication
occurs due to the introduction of regularization terms that promote smooth or blocky
solutions.

• Least-Squares Migration (LSM) explains seismic data via a Born modelling engine to
produce high-resolution images of the subsurface reflectivity (Nemeth et al., 1999).
PyLops-MPI distributes the available sources across different MPI ranks, and each
rank applies the Born modeling operator for a subset of sources with the broadcasted
reflectivity.

• Multi-Dimensional Deconvolution (MDD) is a powerful technique used to estimate
seismic datasets without overburden effects (Ravasi et al., 2022). PyLops-MPI tackles
this large-scale inverse problem by distributing the kernel of the Multi-Dimensional
Deconvolution operator across ranks, allowing each process to apply a batched matrix-
vector multiplication to a portion of the input model and data.

As similar patterns are likely to emerge in inverse problems across other disciplines, we expect
a broad adoption of the PyLops-MPI framework in other scientific fields.
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