
CurvilinearGrids.jl: A Julia package for curvilinear
coordinate transformations
Samuel C. Miller 1

1 Laboratory for Laser Energetics, University of Rochester, Rochester, NY USA
DOI: 10.21105/joss.07508

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @hemanthgrylls
• @DanielVandH

Submitted: 18 November 2024
Published: 17 December 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Finite-difference discretizations of partial differential equations are widespread throughout the
scientific community. Oftentimes finite-differences are used to compute spatial gradients of
fields on a discrete grid, which is typically a uniform or rectilinear Cartesian mesh. Arbitrary
multidimensional geometry is difficult to discretize directly with finite differences, however, due
to non-uniform grid spacing and non-orthogonality. Curvilinear coordinate transformations can
be used as a strategy to enable arbitrary geometry – see for example, applications to the Euler
and Navier-Stokes equations (Chandravamsi et al., 2023; Visbal & Gaitonde, 2002). While
these curvilinear transformations are straightforward, the governing PDEs require additional
terms (metrics) and must adhere to strict conservation laws; these criteria complicate the
application of the transformation and require careful implementation.

Statement of Need
CurvilinearGrids.jl is a Julia (Bezanson et al., 2017) package designed to facilitate curvi-
linear coordinate transformations and the generation of metrics for arbitrary 1D, 2D, and
3D geometry. The API is designed for simple grid construction with minimal user effort;
the backend handles the complicated book-keeping associated with metric computation and
ensures strict adherence to geometric conservation laws when required. While Julia packages
exist to facilitate standard finite-differences, there are few, if any, that provide conservative
metrics for curvilinear transformations.

Grid metric computation is typically directly embedded into a particular simulation framework,
rather than provided as a standalone library, since the metric and PDE discretizations must
be consistent. Third-party grid generation software exists to provide complex multi-block
structured grids for multi-physics codes but metrics are not provided – metric computation must
be tailored to the discretization of the simulation library. CurvilinearGrids.jl is unique in
that it can be imported into existing Julia simulation libraries and immediately provide the ability
to use curvilinear geometry (as long as the governing equations are appropriately modified).
New discretization schemes (6th-order central finite-difference, 5th-order upwind, etc.) can be
added in a straightforward manner to expand the capabilities of CurvilinearGrids.jl.

Example Use
Users provide CurvilinearGrids.jl with discrete coordinate points defined in real-space
(𝑥, 𝑦, 𝑧). These coordinates are then used to compute the transformation to a uniform
computational coordinate space (𝜉, 𝜂, 𝜁). A common example of this is to use a body-fit
or conformal grid and transform it so that it becomes a uniform grid in (𝜉, 𝜂, 𝜁). Standard
finite-difference stencils can be used on the uniform transformed grid. Figure 1 shows an

Miller. (2024). CurvilinearGrids.jl: A Julia package for curvilinear coordinate transformations. Journal of Open Source Software, 9(104), 7508.
https://doi.org/10.21105/joss.07508.

1

https://orcid.org/0000-0001-6452-2308
https://doi.org/10.21105/joss.07508
https://github.com/openjournals/joss-reviews/issues/7508
https://github.com/smillerc/CurvilinearGrids.jl
https://doi.org/10.5281/zenodo.14510381
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/hemanthgrylls
https://github.com/DanielVandH
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07508

example of a curvilinear grid defined in real-space and its representation in computational
space.

Figure 1: Curvilinear grid transformation.

The grid in Figure 1 is generated by the following code snippet.

using CurvilinearGrids

function wavygrid(ni, nj, nhalo=1)

Lx = Ly = 12

n_xy = n_yx = 6

xmin, ymin = (-Lx / 2, -Ly / 2)

Δx0, Δy0 = (Lx / (ni - 1), Ly / (nj - 1))

Ax, Ay = (0.4 / Δx0, 0.8 / Δy0)

coordinate arrays

x = zeros(ni, nj)

y = zeros(ni, nj)

@inbounds for idx in CartesianIndices(x)

i,j = idx.I

x[i, j] = xmin + Δx0 * (

(i - 1) + Ax * sinpi((n_xy * (j - 1) * Δy0) / Ly)

)

y[i, j] = ymin + Δy0 * (

(j - 1) + Ay * sinpi((n_yx * (i - 1) * Δx0) / Lx)

)

end

scheme = :meg6

return CurvilinearGrid2D(x, y, scheme)

end

number of nodes/vertices in each dimension

nx, ny = (30, 40)

Miller. (2024). CurvilinearGrids.jl: A Julia package for curvilinear coordinate transformations. Journal of Open Source Software, 9(104), 7508.
https://doi.org/10.21105/joss.07508.

2

https://doi.org/10.21105/joss.07508

nhalo = 2 # halo cells needed for stencils (can be set to 0)

grid = wavygrid(nx, ny, nhalo)

Coordinate Transformations
Coordinate transformations require Jacobian matrices; terminology in the literature can be
conflicting, but the “Jacobian matrix” is the matrix of partial derivatives that describe the
forward or inverse transformation, and uses a bold-face J. The “Jacobian” then refers to the
determinant of the Jacobian matrix, and is the non-bolded 𝐽. Some authors refer to the matrix
as the “Jacobi matrix” as well. The forward transformation, or 𝑇 ∶ (𝜉, 𝜂, 𝜁) → (𝑥, 𝑦, 𝑧) is
defined as

J = ⎡⎢
⎣

𝑥𝜉 𝑥𝜂 𝑥𝜁
𝑦𝜉 𝑦𝜂 𝑦𝜁
𝑧𝜉 𝑧𝜂 𝑧𝜁

⎤⎥
⎦
, 𝐽 = det[J]

The inverse transformation 𝑇−1: (𝑥, 𝑦, 𝑧) → (𝜉, 𝜂, 𝜁) is defined as

J−1 = ⎡⎢
⎣

𝜉𝑥 𝜉𝑦 𝜉𝑧
𝜂𝑥 𝜂𝑦 𝜂𝑧
𝜁𝑥 𝜁𝑦 𝜁𝑧

⎤⎥
⎦
, 𝐽−1 = det[J−1]

Grid Metrics
When solving transformed PDEs in computational coordinates (𝜉, 𝜂, 𝜁), grid metrics must be
included. Care must be taken if advection or motion is included in the governing equations so
that the geometric conservation law (GCL) is observed (Thomas & Lombard, 1979). If the
scheme does not follow the GCL, errors will build up and ultimately corrupt the solution. In
the case of fluid dynamics, the mesh and governing equation discretizations must follow the
same scheme and be conservative (Visbal & Gaitonde, 2002). One such conservative scheme is
the Monotone Explicit Gradient (MEG) based reconstruction (Chamarthi, 2023; Chandravamsi
et al., 2023), which is included in CurvilinearGrids.jl. Other common schemes include
weighted essentially non-oscillatory (WENO) schemes of various order (Ma et al., 2024). There
is no restriction to particular schemes which can be added in the future.

The grid metrics (derivative terms in J, J−1) at each cell-center or edge are accessed through
the AbstractCurvilinearGrid types exported by CurvilinearGrids.jl. The API currently
supports 1D, 2D, and 3D geometry, with axisymmetric modes for 1D (spherical and cylindrical)
and 2D (cylindrical RZ). Metrics (entries in the forward/inverse Jacobian matrices) are contained
in StructArrays for each dimension; forward metrics (𝑥𝜉, 𝑦𝜉, ...), inverse metrics (𝜉𝑥, 𝜉𝑦, ...),
and normalized inverse metrics (𝜉𝑥 ≡ 𝐽𝜉𝑥). Some authors define the normalized metric as
𝜉𝑥 ≡ 𝜉𝑥/𝐽, but the definition of the forward and inverse Jacobians are swapped. Chapter 3
in Huang & Russell (2011) has a particularly lucid description of how these metrics can be
included in PDE discretizations.

Each grid type includes the following metrics:

• Cell centered metrics: (𝜂𝑦, 𝑦𝜉, ...) via grid.cell_center_metrics

• Edge centered metrics (grid.edge_metrics): Inverse 𝜉𝑥, and normalized inverse 𝜉𝑥 at
𝑖 + 1/2, 𝑗 + 1/2, 𝑘 + 1/2

• Temporal metrics: 𝜉𝑡, 𝜂𝑡, 𝜁𝑡 for both cell-centered and edge metrics.

Both edge and cell-centered metrics are required for many PDE discretizations – the interpola-
tion from cell-center to edge must be consistent, i.e., the same interpolation scheme must
be shared by the PDE discretization and mesh metric computation. One such scheme that is
included in CurvilinearGrids.jl is the 6th-order MEG scheme. Finding the forward metric
(𝜙𝜉 = 𝜙𝑖+1/2 − 𝜙𝑖−1/2) is accomplished by the following:

Miller. (2024). CurvilinearGrids.jl: A Julia package for curvilinear coordinate transformations. Journal of Open Source Software, 9(104), 7508.
https://doi.org/10.21105/joss.07508.

3

https://doi.org/10.21105/joss.07508

𝜙𝑖+1/2 = 1
2
(𝜙𝐿

𝑖+1/2 + 𝜙𝑅
𝑖+1/2)

= 1
2
[(𝜙𝑖 +

1
2
𝜙′
𝑖 +

1
12

𝜙″
𝑖) + (𝜙𝑖+1 +

1
2
𝜙′
𝑖+1 +

1
12

𝜙″
𝑖+1)]

𝜙𝑖−1/2 = 1
2
(𝜙𝐿

𝑖−1/2 + 𝜙𝑅
𝑖−1/2)

= 1
2
[(𝜙𝑖−1 +

1
2
𝜙′
𝑖−1 +

1
12

𝜙″
𝑖−1) + (𝜙𝑖 +

1
2
𝜙′
𝑖 +

1
12

𝜙″
𝑖)]

Where the first derivative is defined as

(𝜕𝜙
𝜕𝜉

)
𝑖
= 3

4
(𝜙𝑖+1 + 𝜙𝑖−1) +

3
20

(𝜙𝑖+2 + 𝜙𝑖−2) +
1
60

(𝜙𝑖+3 + 𝜙𝑖−3),

and the second derivative is

(𝜕2𝜙
𝜕𝜉2

)
𝑖
= 2(𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1) +

1
2
[(𝜕𝜙

𝜕𝜉
)
𝑖+1

− (𝜕𝜙
𝜕𝜉

)
𝑖−1

] .

At boundaries, one-sided or partially one-sided finite difference equations must be used. In
future releases, additional discretization schemes will be included.

Acknowledgments
This material is based upon work supported by the Department of Energy [National Nuclear Se-
curity Administration] University of Rochester “National Inertial Confinement Fusion Program”
under Award Number(s) DE-NA0004144.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

References
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Chamarthi, A. S. (2023). Gradient based reconstruction: Inviscid and viscous flux discretizations,
shock capturing, and its application to single and multicomponent flows. Computers &
Fluids, 250, 105706. https://doi.org/10.1016/j.compfluid.2022.105706

Chandravamsi, H., Chamarthi, A. S., Hoffmann, N., & Frankel, S. H. (2023). On the application
of gradient based reconstruction for flow simulations on generalized curvilinear and dynamic
mesh domains. Computers & Fluids, 258, 105859. https://doi.org/10.1016/j.compfluid.
2023.105859

Huang, W., & Russell, R. D. (2011). Adaptive moving mesh methods (Vol. 174). Springer.
https://doi.org/10.1007/978-1-4419-7916-2

Miller. (2024). CurvilinearGrids.jl: A Julia package for curvilinear coordinate transformations. Journal of Open Source Software, 9(104), 7508.
https://doi.org/10.21105/joss.07508.

4

https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.compfluid.2022.105706
https://doi.org/10.1016/j.compfluid.2023.105859
https://doi.org/10.1016/j.compfluid.2023.105859
https://doi.org/10.1007/978-1-4419-7916-2
https://doi.org/10.21105/joss.07508

Ma, W., Luo, D., Li, S., Qiu, J., Ni, G., & Chen, Y. (2024). High-order adaptive multi-resolution
method on curvilinear grids I: Finite difference framework. Journal of Computational Physics,
498, 112654. https://doi.org/10.1016/j.jcp.2023.112654

Thomas, P. D., & Lombard, C. K. (1979). Geometric conservation law and its application to
flow computations on moving grids. AIAA Journal, 17(10), 1030–1037. https://doi.org/
10.2514/3.61273

Visbal, M. R., & Gaitonde, D. V. (2002). On the use of higher-order finite-difference schemes
on curvilinear and deforming meshes. Journal of Computational Physics, 181(1), 155–185.
https://doi.org/10.1006/jcph.2002.7117

Miller. (2024). CurvilinearGrids.jl: A Julia package for curvilinear coordinate transformations. Journal of Open Source Software, 9(104), 7508.
https://doi.org/10.21105/joss.07508.

5

https://doi.org/10.1016/j.jcp.2023.112654
https://doi.org/10.2514/3.61273
https://doi.org/10.2514/3.61273
https://doi.org/10.1006/jcph.2002.7117
https://doi.org/10.21105/joss.07508

	Summary
	Statement of Need
	Example Use
	Coordinate Transformations
	Grid Metrics
	Acknowledgments
	References

