
pyMechT: A Python package for mechanics of soft
tissues
Ankush Aggarwal 1,2, Ross Williams 1,2, Claire Rosnel 1,2, Silvia
Renon 1,2, Jude M. Hussain1,2, André F. Schmidt1,2, Shiting Huang 1,2,
Sean McGinty 1,2, and Andrew McBride 1,2

1 Glasgow Computational Engineering Centre (GCEC), University of Glasgow, G12 8LT, United Kingdom
2 James Watt School of Engineering, University of Glasgow, G12 8LT, United Kingdom

DOI: 10.21105/joss.07490

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @siboles
• @jpsferreira
• @mpeirlinck

Submitted: 27 September 2024
Published: 12 February 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
pyMechT fills an important gap for simulating simplified models in soft tissue mechanics, such
as for ex-vivo testing protocols. Instead of detailed finite element simulations, which can
be time-consuming and excessive for certain scenarios, pyMechT allows one to configure and
run simulations extremely quickly. Moreover, the Python package makes it straightforward
to perform parameter estimation and Bayesian inference. Its unique capabilities include
incorporating layered structure of tissues and residual stresses.

Statement of need
Mechanics of soft tissues plays an important role in several physiological problems, including
cardio-vascular and musculoskeletal systems. Common ex-vivo biomechanical testing protocols
used to characterize tissues include uniaxial extension for one-dimensional structures, such
as tendons and ligaments, biaxial extension for planar tissues, such as heart valves and skin,
and inflation-extension for tubular tissue structures, such as blood vessels (Figure 1). These
experiments aim to induce a uniform deformation that can be easily related to the generated
stresses.

a) b) c)

Figure 1: Three common ex-vivo experimental protocols and corresponding load-deformation plots: a)
uniaxial extension, b) planar biaxial extension, and c) extension-inflation at different longitudinal stretch
𝜆𝑍

Aggarwal et al. (2025). pyMechT: A Python package for mechanics of soft tissues. Journal of Open Source Software, 10(106), 7490. https:
//doi.org/10.21105/joss.07490.

1

https://orcid.org/0000-0002-1755-8807
https://orcid.org/0000-0002-5433-4933
https://orcid.org/0009-0000-0038-4321
https://orcid.org/0000-0002-2325-8771
https://orcid.org/0009-0007-5020-9020
https://orcid.org/0000-0002-2428-2669
https://orcid.org/0000-0001-7153-3777
https://doi.org/10.21105/joss.07490
https://github.com/openjournals/joss-reviews/issues/7490
https://github.com/ankushaggarwal/pymecht
https://doi.org/10.5281/zenodo.14823425
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/siboles
https://github.com/jpsferreira
https://github.com/mpeirlinck
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07490
https://doi.org/10.21105/joss.07490


While several finite element analysis packages are available for performing biomechanical
simulation, they are generally intended for more complex scenarios involving non-uniform/non-
affine deformations. For simulating the ex-vivo experiments, which induce close-to-uniform
deformations, in-house codes are commonly developed. However, the absence of a common
framework can lead to lack of consistency and reproducibility. Moreover, advanced analyses
require statistical approaches, such as Monte Carlo simulations and Bayesian inference. To fill
this gap, we have developed the open-source Python package pyMechT.

Structure

MatModel

SampleExperiment

ParamFitter

MCMC/RandomParameters

Figure 2: Structure of pyMechT

The package is implemented in Python using an object-oriented structure. The package builds
upon widely-used Python libraries: NumPy, SciPy, Pandas, Matplotlib, and PyTorch. pyMechT
consists of four main modules (see Figure 2): 1) MatModel for defining constitutive models
for materials, 2) SampleExperiment for simulating ex-vivo uniaxial/biaxial/inflation-extension
experiments, 3) ParamFitter for performing parameter estimation based on experimental data,
and 4) MCMC/RandomParameters for performing Bayesian inference using Monte Carlo (MC) or
Markov Chain Monte Carlo (MCMC) simulations. Currently, there are eighteen material models
implemented in MatModel, including fourteen analytical hyperelastic models, two data-based
hyperelastic models, and one structural model. In addition, an arbitrary hyperelastic model
is also implemented, where a user-defined form of the free energy functional is automatically
implemented based on symbolic differentiation. Below is the list of the material models
available to-date:

• ‘NH’: Neo-Hookean model
• ‘MR’: Mooney-Rivlin model
• ‘YEOH’: Yeoh model
• ‘LS’: Lee-Sacks model
• ‘MN’: May-Newman model
• ‘GOH’: Gasser-Ogden-Holzapfel model
• ‘HGO’: Holzapfel-Gasser-Ogden model
• ‘expI1’: A model with an exponential of I1
• ‘polyI4’: A model with a polynomial of I4
• ‘HY’: Humphrey-Yin model
• ‘Holzapfel’: Holzapfel model
• ‘volPenalty’: A penalty model for volumetric change
• ‘ArrudaBoyce’: Arruda-Boyce model

Aggarwal et al. (2025). pyMechT: A Python package for mechanics of soft tissues. Journal of Open Source Software, 10(106), 7490. https:
//doi.org/10.21105/joss.07490.

2

https://doi.org/10.21105/joss.07490
https://doi.org/10.21105/joss.07490


• ‘Gent’: Gent model
• ‘splineI1’: A spline model of I1
• ‘splineI1I4’: A spline model of I1 and I4
• ‘StructModel’: A structural model with fiber distribution
• ‘ARB’: Arbitrary model with user-defined strain energy density function

A particular focus is on parameters, for which a custom dictionary has been implemented named
ParamDict. This dictionary facilitates handling large numbers of parameters via string-based
identifiers (“Keys”), and stores lower/upper bounds, fixed/variable flags, in addition to the
current parameter values. The dictionary can also be saved/read as csv files. An example set
of parameters is shown in Table 1 below.

Table 1: Example set of parameters saved as ParamDict object where “Key” acts as string-based identifier

Keys Value Fixed? Lower bound Upper bound
mu_0 100 No 0.01 500
L10 0.3 No 0.1 0.5
L20 1.0 No 0.1 2.0
thick 0.05 Yes - -
phi 50 No 0 90

Documentation and examples
Detailed documentation is hosted on readthedocs. The documentation starts with an overview
of the package, and leads to a basic tutorial that helps one getting started and briefly
demonstrates all of the essential features. Additionally, eleven examples have been provided to
illustrate all the features and options available in pyMechT. These include the unique features of
modeling layered structures with different reference dimensions, which is commonly encountered
in biological soft tissues. Simulating such a model with any finite element software would be
non-trivial. Then, the theoretical background of the implemented models is provided, before
concluding with a package reference automatically generated using Sphinx.

Advantages over finite element simulation
In principle, the problems that can be solved using pyMechT can also be solved using any finite
element simulation software. However, pyMechT offers the following advantages:

• Geometry and mesh creation would be required for a finite element simulation, which
usually takes some time. However, the pre-defined geometrical features in pyMechT means
that one only needs to choose the right class and parameters. In addition, no meshing is
required. This means that setting up the problem (i.e., defining the geometry/mesh and
loads) is much faster in pyMechT. Once the model has been setup, the computational
time required to solve it is comparable, depending on the finite element mesh density.

• Enforcing incompressibility in a finite element simulation can be numerically challenging,
necessitating approaches such as Lagrange multiplier with a three-field formulation.
Instead, in pyMechT, the incompressibility is analytically enforced exactly, thus making
the results more robust.

• The fast nature of simulations in pyMechT makes it feasible to run 𝒪(105) simulations in
several minutes, thus facilitating Monte Carlo and Bayesian inference. This adds the
capability of calculating, not only the mean response, but also the confidence intervals
of model fits and predictions.

Aggarwal et al. (2025). pyMechT: A Python package for mechanics of soft tissues. Journal of Open Source Software, 10(106), 7490. https:
//doi.org/10.21105/joss.07490.

3

https://pymecht.readthedocs.io/en/latest/index.html
https://doi.org/10.21105/joss.07490
https://doi.org/10.21105/joss.07490


• The reference zero-stress state of biological tissues can be unknown or ambiguous.
Moreover, the biological tissues are heterogeneous, with multiple layers each of varying
properties. These aspects are non-trivial to incorporate in a finite element simulation,
due to the need for recreating the geometry and/or incompatibility of the initial state.
However, it is straightforward to simulate these in pyMechT.

Overall, there are many other tools that can perform constitutive model fitting. Commercial
finite element software Abaqus and Ansys have in-built constitutive model fitting tools, such
as, PolyUMod and MCalibration. Hyperfit is a commercial software specifically for constitutive
model fitting, with the advantage of having a graphical user interface. However, these
are commercial and are not free/open-source. There are alternative open-source tools for
constitutive model fitting, such as matmodelfit and hyperelastic. However, these are not
specifically focused on tissues and lack the capability of simulating layered samples or inflation-
extension experiment on tubular structures, common in tissue mechanics. Lastly, most of
the existing tools do not incorporate Bayesian inference, which is important for providing a
confidence interval on fitted parameters and model predictions.

Uses in literature
pyMechT has been used for Bayesian model selection based on extensive planar biaxial extension
data (Aggarwal, Hudson, et al., 2023). This work required rapid simulation of varied constitutive
models, which was facilitated by pyMechT. Similarly, the Bayesian inference via Markov Chain
Monte Carlo in pyMechT was used to infer the distribution of aortic biomechanical and
geometrical properties based on in-vivo measurements (as likelihood) and ex-vivo biaxial
extension data (as prior distribution) (Aggarwal et al., 2025). Moreover, data-driven model
developed in Aggarwal, Jensen, et al. (2023) has been used in pyMechT via the splineI1 and
splineI1I4 material models.

Conclusion and future plans
pyMechT fills an important gap and allows soft tissue biomechanics researchers to model ex-vivo
testing setups in a fast, robust, and flexible manner. The package is numerically efficient and
extensively documented. It has facilitated several publications, and we believe that it can
benefit the wider community. In the future, we plan to extend the capabilities of the package
to include more material models, such as inelastic (viscoelastic, plastic, damage, growth &
remodeling) pre-defined formulations, and other ex-vivo setups (such as microindentation using
Hertz contact model). Lastly, the package could be coupled with others to allow multi-physics
simulations, such as for hemodynamics (Coccarelli et al., 2021a, 2021b) and biochemical
regulation (Coccarelli et al., 2024).

Author contributions
Ankush Aggarwal: Conceptualization, Methodology, Software, Writing - Original Draft, Super-
vision. Ross Williams: Methodology, Software, Writing - Review and Editing. Claire Rosnel:
Software, Testing. Silvia Renon: Testing. Jude M. Hussain: Testing. André F. Schmidt:
Testing. Shiting Huang: Software. Sean McGinty: Supervision, Writing - Review and Editing.
Andrew McBride: Supervision, Writing - Review and Editing.

References
Aggarwal, A., Coccarelli, A., & McGinty, S. (2025). Heterogeneity and multi-scale modeling

in vascular biomechanics (J. Liao & J. Y. Wong, Eds.). Springer Nature Switzerland.
ISBN: 978-3-031-81742-7

Aggarwal et al. (2025). pyMechT: A Python package for mechanics of soft tissues. Journal of Open Source Software, 10(106), 7490. https:
//doi.org/10.21105/joss.07490.

4

https://www.3ds.com/products/simulia/abaqus
https://www.ansys.com/
https://www.ansys.com/products/structures/polyumod
https://www.ansys.com/products/structures/mcalibration
https://www.hyperfit.cz/home.php
https://github.com/KnutAM/matmodfit/tree/master
https://github.com/adtzlr/hyperelastic
https://doi.org/10.21105/joss.07490
https://doi.org/10.21105/joss.07490


Aggarwal, A., Hudson, L. T., Laurence, D. W., Lee, C.-H., & Pant, S. (2023). A bayesian
constitutive model selection framework for biaxial mechanical testing of planar soft tissues:
Application to porcine aortic valves. Journal of the Mechanical Behavior of Biomedical
Materials, 138, 105657. https://doi.org/10.1016/j.jmbbm.2023.105657

Aggarwal, A., Jensen, B. S., Pant, S., & Lee, C.-H. (2023). Strain energy density as a
gaussian process and its utilization in stochastic finite element analysis: Application to
planar soft tissues. Computer Methods in Applied Mechanics and Engineering, 404, 115812.
https://doi.org/10.1016/j.cma.2022.115812

Coccarelli, A., Carson, J. M., Aggarwal, A., & Pant, S. (2021a). A framework for incorporating
3D hyperelastic vascular wall models in 1D blood flow simulations. Biomechanics and Mod-
eling in Mechanobiology, 20(4), 1231–1249. https://doi.org/10.1007/s10237-021-01437-5

Coccarelli, A., Carson, J. M., Aggarwal, A., & Pant, S. (2021b). 1D-hyperelastic-
haemodynamics: Version1 (Version V1). Zenodo. https://doi.org/10.5281/zenodo.
4522152

Coccarelli, A., Pant, S., Polydoros, I., & Harraz, O. F. (2024). A new model for evaluating
pressure-induced vascular tone in small cerebral arteries. Biomechanics and Modeling in
Mechanobiology, 23(1), 271–286. https://doi.org/10.1007/s10237-023-01774-7

Aggarwal et al. (2025). pyMechT: A Python package for mechanics of soft tissues. Journal of Open Source Software, 10(106), 7490. https:
//doi.org/10.21105/joss.07490.

5

https://doi.org/10.1016/j.jmbbm.2023.105657
https://doi.org/10.1016/j.cma.2022.115812
https://doi.org/10.1007/s10237-021-01437-5
https://doi.org/10.5281/zenodo.4522152
https://doi.org/10.5281/zenodo.4522152
https://doi.org/10.1007/s10237-023-01774-7
https://doi.org/10.21105/joss.07490
https://doi.org/10.21105/joss.07490

	Summary
	Statement of need
	Structure
	Documentation and examples
	Advantages over finite element simulation
	Uses in literature
	Conclusion and future plans
	Author contributions
	References

