
QuantizedSystemSolver: A discontinuous ODE system
solver in Julia.
Elmongi Elbellili 1,2, Daan Huybrechs 2, and Ben Lauwens 1

1 Royal Military Academy, Brussels, Belgium 2 KU Leuven, Leuven, Belgium
DOI: 10.21105/joss.07434

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @joshuaeh
• @lamBOOO

Submitted: 28 August 2024
Published: 23 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Contemporary engineering systems, such as electrical circuits, mechanical systems with shocks,
and chemical reactions with rapid kinetics, are often characterized by dynamics that can be
modeled using stiff differential equations with events. Stiffness typically arises in these systems
due to the presence of both rapidly changing and slowly changing components. This stiffness
requires extremely small time steps to maintain stability when using traditional numerical
integration techniques. Recently, quantization-based techniques have emerged as an effective
alternative for handling such complex models. Methods like the Quantized State System (QSS)
and the Linearly Implicit Quantized State System (LIQSS) offer promising results, particularly
for large sparse stiff models. Unlike classic numerical integration methods, which update all
system variables at each time step, the quantized approach updates individual system variables
independently. Specifically, in quantized methods, each variable is updated only when its
value changes by a predefined quantization level. Moreover, these methods are advantageous
when dealing with discontinuous events. An event is a discontinuity where the state of the
system abruptly changes at a specific point. Classic methods may struggle with events: They
either undergo expensive iterations to pinpoint the exact discontinuity instance or resort to
interpolating its location, resulting in unreliable outcomes. Therefore, this QSS strategy can
significantly reduce computational effort and improve efficiency in large sparse stiff models
with frequent discontinuities (Pietro et al., 2019).

Statement of need
Traditional solvers are challenged by large sparse stiff models and systems with frequent
discontinuities. The buck converter is a stiff system with frequent discontinuities that classic
solvers from the DifferentialEquations.jl (Rackauckas & Nie, 2017) are currently unable to
handle properly. Written in the easy-to-learn Julia programming language (Bezanson et
al., 2017) and inspired by the qss-solver written in C (Fernández & Kofman, 2014), the
QuantizedSystemSolver.jl package takes advantage of Julia features such as multiple dispatch
and metaprogramming. The package shares the same interface as the DifferentialEquations.jl
package and aims to efficiently solve a large set of stiff Ordinary Differential Equations (ODEs)
with events by implementing the QSS and LIQSS methods. It is the first such tool to be
published in the Julia ecosystem.

Quantization-based techniques
The general form of a problem composed of a set of ODEs and a set of events that QSS is
able to solve is described in the following equations:

𝑋̇ = 𝑓(𝑋, 𝑃 , 𝑡); if 𝑧𝑐(𝑋, 𝑃 , 𝑡): set 𝑥𝑖 = 𝐻(𝑋,𝑃 , 𝑡) and 𝑝𝑗 = 𝐿(𝑋,𝑃 , 𝑡),

Elbellili et al. (2025). QuantizedSystemSolver: A discontinuous ODE system solver in Julia. Journal of Open Source Software, 10(105), 7434.
https://doi.org/10.21105/joss.07434.

1

https://orcid.org/0000-0003-1230-5488
https://orcid.org/0000-0002-0536-2647
https://orcid.org/0000-0003-0761-6265
https://doi.org/10.21105/joss.07434
https://github.com/openjournals/joss-reviews/issues/7434
https://github.com/mongibellili/QuantizedSystemSolver.jl
https://doi.org/10.5281/zenodo.14361143
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/joshuaeh
https://github.com/lamBOOO
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07434

where 𝑋 = [𝑥1, 𝑥2..., 𝑥𝑛]𝑇 is the state vector, 𝑓 ∶ ℝ𝑛 × ℝ𝑚 × ℝ+ → ℝ𝑛 is the derivative
function, and 𝑡 is the independent variable. 𝑃 = [𝑝1, 𝑝2..., 𝑝𝑚]𝑇 is the vector of the system
discrete variables. 𝑛 and 𝑚 are the number of state variables and discrete variables of the
system respectively. 𝑧𝑐 is an event condition, 𝐻 and 𝐿 are functions used in the effects of the
event 𝑧𝑐.

In QSS, besides the step size, the difference between 𝑥𝑖(𝑡𝑘) (the current value) and
𝑥𝑖(𝑡𝑘+1) (the next value) is called the quantum Δ𝑖. Depending on the type of the
QSS method (explicit or implicit), a new variable 𝑞𝑖 is set to equal 𝑥𝑖(𝑡𝑘) or 𝑥𝑖(𝑡𝑘+1)
respectively. 𝑞𝑖 is called the quantized state of 𝑥𝑖, and it is used in updating the deriva-
tive function (Elbellili et al., 2024). A general description of a QSS algorithm is given as follows:

Package description
While the package is optimized to be fast, extensibility is not compromised. It is divided into
three entities that can be extended separately: the problem, the algorithm, and the solution.
The rest of the code creates these entities and glues them together. The API was designed to
match the DifferentialEquations.jl interface while providing an easier way to handle events.
The problem is defined inside a function, in which the user may introduce any parameters,
variables, equations, and events:

function func(du, u, p, t)

parameters, helpers, differential eqs., if-statements for events; e.g.:

du[1] = p[1] * u[1]

if (t - 1.0 > 0.0) p[1] = -10.0 end

end

Then, this function is passed to an ODEProblem function along with the initial conditions, the
time span, and any parameters or discrete variables.

tspan = (0.0, 2.0)

u = [10.0] # initial conditions

p = [-1.0] # parameters and discrete variables

odeprob = ODEProblem(func, u, tspan, p)

The output of the previous ODEProblem function, which is a QSS problem, is passed to a solve

function with other configuration arguments such as the algorithm type and the tolerance.
The solve function dispatches on the given algorithm and starts the numerical integration.

sol = solve(odeprob, nmliqss2(), abstol = 1E-5, reltol = 1E-5)

At the end, a solution object is produced that can be queried, plotted, and analyzed for error.

sol(0.05, idxs = 1) # get the value of variable 1 at time 0.05

sol.stats # get statistics about the simulation

plot(sol) # plot the solution

Elbellili et al. (2025). QuantizedSystemSolver: A discontinuous ODE system solver in Julia. Journal of Open Source Software, 10(105), 7434.
https://doi.org/10.21105/joss.07434.

2

https://doi.org/10.21105/joss.07434

The solver uses other packages such as MacroTools.jl (Innes, 2015) for user-code parsing
and SymEngine.jl (Fernando, 2015) for Jacobian computation and dependency extraction. It
also uses a modified TaylorSeries.jl (Benet & Sanders, 2014) that implements caching to
obtain free Taylor variable operations, since the current version of TaylorSeries creates a heap
allocated object for every operation. The approximation through Taylor variables transforms
any complicated equations to polynomials, making root finding cheaper–a process that QSS
methods rely on heavily.

The buck converter example
The buck converter decreases the voltage and increases the current with a greater power
efficiency than linear regulators (Migoni et al., 2015). Its circuit is shown in Fig.1(a).

Figure 1: The buck converter

The diode 𝐷 and the switch 𝑆 can be modeled as two variable resistors, denoted by 𝑅𝐷 and
𝑅𝑆. A mesh and a nodal analysis give the relationship between the different components in
the circuit as follows:

𝑖𝑑 = 𝑅𝑆.𝑖𝑙−𝑉 1
𝑅𝑆+𝑅𝐷 ; 𝑑𝑢𝑐

𝑑𝑡 = 𝑖𝑙−
𝑢𝑐
𝑅

𝐶 ; 𝑑𝑖𝑙
𝑑𝑡 = −𝑢𝑐−𝑖𝑑.𝑅𝐷

𝐿

The buck problem contains frequent discontinuities and can be solved by the QuantizedSys-
temSolver.jl package using the following code, that generates the solution plot of Fig.1(b):

using QuantizedSystemSolver

function buck(du, u, p, t)

Constant parameters

C = 1e-4; L = 1e-4; R = 10.0; V1 = 24.0; T = 1e-4; ROn = 1e-5; ROff = 1e5

Optional rename of the continuous and discrete variables

RD = p[1]; RS = p[2]; nextT = p[3]; lastT = p[4]; il = u[1]; uc = u[2]

Equations

id = (il * RS - V1) / (RD + RS) # diode's current

du[1] = (-id * RD - uc)/L; du[2] = (il - uc / R) / C

Events

if t - nextT > 0.0 # model when the switch is ON

lastT = nextT; nextT = nextT + T; RS = ROn

end

if t - lastT - 0.5 * T > 0.0 # model when the switch is OFF

RS = ROff

end

if id > 0 # model when the Diode is ON

RD = ROn;

else

RD = ROff;

Elbellili et al. (2025). QuantizedSystemSolver: A discontinuous ODE system solver in Julia. Journal of Open Source Software, 10(105), 7434.
https://doi.org/10.21105/joss.07434.

3

https://github.com/FluxML/MacroTools.jl
https://github.com/symengine/SymEngine.jl
https://github.com/JuliaDiff/TaylorSeries.jl/
https://doi.org/10.21105/joss.07434

end

end

Initial conditions and time settings

p = [1e5, 1e-5, 1e-4, 0.0]; u0 = [0.0, 0.0]; tspan = (0.0, 0.001)

Define the problem

QSSproblem = ODEProblem(buck, u0, tspan, p)

solve the problem

sol = solve(QSSproblem, nmliqss2(), abstol = 1e-3, reltol = 1e-2)

Get the value of variable 2 at time 0.0005

sol(0.0005, idxs = 2)

plot the solution

plot(sol)

Conclusion
The package provides robust functionality to efficiently solve stiff ODEs with events using the
quantized state method. It is well-documented, making it accessible for researchers across
various domains. Additionally, users can extend its capabilities to handle a variety of problems.

Acknowledgements
This research has received no external funding.

References
Benet, L., & Sanders, D. P. (2014). A Julia package for Taylor expansions in one or more

independent variables. https://github.com/JuliaDiff/TaylorSeries.jl. https://doi.org/10.
5281/zenodo.2557003

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Elbellili, E., Lauwens, B., & Huybrechs, D. (2024). Investigation of different conditions
to detect cycles in linearly implicit quantized state systems. Proceedings of the 3rd.
International Conference on Computational Modeling, Simulation and Optimization. https:
//doi.org/10.1109/ICCMSO61761.2024.00095

Fernández, J., & Kofman, E. (2014). A stand-alone quantized state system solver for continuous
system simulation. SIMULATION: Transactions of the Society for Modeling and Simulation
International, 90, 782–799. https://doi.org/10.1177/0037549714536255

Fernando, I. (2015). SymEngine.jl. https://github.com/symengine/SymEngine.jl

Innes, M. (2015). MacroTools.jl. https://github.com/FluxML/MacroTools.jl

Migoni, G., Kofman, E., Bergero, F., & Fernandez, J. (2015). Quantization-based simulation
of switched mode power supplies. SIMULATION, 91, 320–336. https://doi.org/10.1177/
0037549715575197

Pietro, F., Migoni, G., & Kofman, E. (2019). Improving linearly implicit quantized state
system methods. In Simulation: Transactions of the Society for Modeling and Simulation
International. https://doi.org/10.1177/0037549718766689

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl a performant and feature-rich
ecosystem for solving differential equations in Julia. The Journal of Open Research Software,
5, 15–24. https://doi.org/10.5334/jors.151

Elbellili et al. (2025). QuantizedSystemSolver: A discontinuous ODE system solver in Julia. Journal of Open Source Software, 10(105), 7434.
https://doi.org/10.21105/joss.07434.

4

https://github.com/JuliaDiff/TaylorSeries.jl
https://doi.org/10.5281/zenodo.2557003
https://doi.org/10.5281/zenodo.2557003
https://doi.org/10.1137/141000671
https://doi.org/10.1109/ICCMSO61761.2024.00095
https://doi.org/10.1109/ICCMSO61761.2024.00095
https://doi.org/10.1177/0037549714536255
https://github.com/symengine/SymEngine.jl
https://github.com/FluxML/MacroTools.jl
https://doi.org/10.1177/0037549715575197
https://doi.org/10.1177/0037549715575197
https://doi.org/10.1177/0037549718766689
https://doi.org/10.5334/jors.151
https://doi.org/10.21105/joss.07434

	Summary
	Statement of need
	Quantization-based techniques
	Package description
	The buck converter example
	Conclusion
	Acknowledgements
	References

