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Figure 1: Logo of madupite.

Summary
In this paper we describe madupite, a distributed high-performance solver for Markov Decision
Processes (MDPs). MDPs are a powerful mathematical tool to model a variety of problems
arising in different fields (Feinberg & Shwartz, 2002; White, 1985), from finance (Bäuerle &
Rieder, 2011) to epidemiology (Steimle & Denton, 2017) and traffic control (Xu et al., 2016).
In general terms, MDPs are used to mathematically characterize dynamical systems whose state
is evolving in time as a consequence of actions that we play on the system and disturbances
that are acting on it. The goal is generally to select actions in order to minimize in expectation
a certain cumulative discounted metric over time, e.g., deviations from a reference state and/or
costs incurred by selecting certain actions in specific states of the system (Bellman, 1957;
Bertsekas, 2007).

MDPs arising from real-world applications tend to be extremely high-dimensional, and in some
cases, the number of states in the system grows exponentially with the number of certain
parameters (Powell, 2011). This phenomenon is known as the curse-of-dimensionality and it is
generally tackled in reinforcement learning with the deployment of function approximations
(Sutton & Barto, 2018). The deployment of the latter leads to a smaller size optimization
problem since, instead of optimizing for the number of states, there is only need to optimize
for the number of parameters deployed in the function approximation, which is generally much
smaller than the original state space size. This comes at the price of introducing sub-optimality
with respect to the original solution.
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Statement of need
Modern high-performance clusters and supercomputers offer the possibility of simulating,
storing, and solving large-scale MDPs. To exploit modern computational resources, high-
performance software packages that can efficiently distribute computation as well as scale
adequately are needed. Even though there are a number of toolboxes to solve MDPs, such
as pymdptoolbox (Chadès et al., 2014) and the recent mdpsolver (Reenberg Andersen &
Fink Andersen, 2024), to the best of our knowledge there is no existing solver that combines
high-performance distributed computing with the possibility of selecting a solution method
that is tailored to the application at hand. pymdptoolbox is coded in plain Python, which is
limited in scalability due to the lack of parallel support. In addition, it does not support parallel
and distributed computing. mdpsolver is instead written in C++, supports parallel computing,
and comes with a user-friendly Python API. Even so, mdpsolver is not fully featured. The
solution methods available are limited to modified policy iteration, a dynamic programming
(DP) method that has shown poor performance for a significant class of problems of practical
interest (Gargiani et al., 2023, 2024). In addition, mdpsolver makes certain implementation
choices that limit its applicability; e.g., matrices with values and indices being stored in nested
std::vector independently of their sparsity degree and thus precluding the use of available
optimized linear algebra routines.

Our solver aims to enable the solution of large-scale MDPs with more than a million states
through efficient utilization of modern computational resources, while abstracting away the
complexity of distributed computing to provide a user-friendly experience. madupite is a high-
performance distributed solver that is capable of efficiently distributing the memory load and
computation, and that comes with a wide range of choices for solution methods enabling the
user to select the one that is best tailored to its specific application. Furthermore, madupite’s
core is in C++, but it is equipped with a user-friendly Python API to enable its deployment to
a broader range of users. The combination of distributed computing, user-friendly Python API,
and support for a wide range of methods in madupite will enable researchers and engineers
to solve exactly gigantic scale MDPs which previously could only be tackled via function
approximations.

Problem Setting and Solution Methods
madupite solves infinite-horizon discounted MDPs with finite state and action spaces. This
problem class can be efficiently tackled with inexact policy iteration methods (iPI) (Gargiani
et al., 2023, 2024). These methods are a variant of policy iteration (Bertsekas, 2007), where
inexactness is introduced at the policy evaluation step for scalability reasons. iPI methods are
general enough to embrace standard DP methods, such as value iteration and modified policy
iteration, which are the main solution methods of mdpsolver. Interested readers should refer
to Gargiani et al. (2024) for an in-depth description of the problem setting and a thorough
mathematical analysis of iPI methods. The versatility of iPI methods makes them particularly
suited to efficiently solve different large-scale instances, while their structure is also favorable
for distributed implementations, which are needed to exploit high-performance computing
clusters.

The great flexibility of madupite is that on the algorithmic side it relies on the possibility of
customizing the iPI method deployed for the specific problem at hand by tuning the level
of inexactness and selecting among a wide range of inner solvers for the approximate policy
evaluation step (step 8 of Algorithm 3 in Gargiani et al. (2024)). It is indeed empirically and
theoretically demonstrated that, depending on the specific structure of the problem, different
inner solvers may enhance the convergence performance (Gargiani et al., 2023, 2024).
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Implementation
The core of madupite is written in C++ and relies on PETSc (Portable, Extensible Toolkit for
Scientific Computation) for the distributed implementation of iPI methods. PETSc (Balay
et al., 1997, 2024a, 2024b) is an open-source high-performance C library and comes with a
wide range of highly-optimized linear system solvers and memory-efficient sparse linear algebra
data types and routines that can be used for a variety of problems, including DP. We rely on
PETSc also as it natively adopts a distributed memory parallelism using the MPI standard to
enable scalability beyond one CPU. MPI allows users to abstract the parallelism away from
the underlying hardware and enables them to run the same code in parallel on their personal
device or even on multiple nodes of a high-performance computing cluster. madupite itself is
a fully-featured C++20 library and, by leveraging the nanobind binding library (Jakob, 2022),
offers an equivalent API in Python that can be installed as a package using pip.

Finally, madupite allows the user to create an MDP by loading offline data collected from
previously run experiments as well as from online simulations, offering the possibility of carrying
out both the simulations and the solution in a completely parallel/distributed fashion. More
details on how to use madupite and all of its functionalities can be found in its documentation
and in the examples folder, where we provide an extensive selection of code examples on how
to use this library in Python and C++.
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