
Sigma: Uncertainty Propagation for C++
Jonathan M. Waldrop 1¶ and Ryan M. Richard 1,2

1 Chemical and Biological Sciences, Ames National Laboratory, USA 2 Department of Chemistry,
Iowa State University, USA ¶ Corresponding author

DOI: 10.21105/joss.07404

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @baxmittens
• @YehorYudinIPP

Submitted: 17 October 2024
Published: 13 February 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Sigma is a header-only C++-17 library for uncertainty propagation, inspired by uncertainties

(Lebigot, 2009) for Python and Measurements.jl (Giordano, 2016) for Julia. The library
tracks the functional correlation between dependent and independent variables, ensuring that
the uncertainty of the independent variables is properly considered in the calculation of the
dependent variables’ uncertainties. It is intended as a near drop-in replacement for the standard
floating point types (aside from uncertainty specification), and aims to be easily interoperable
with the existing standard types.

Statement of need
In scientific analysis, values are often paired with the degree of uncertainty in the accuracy of
that value. This uncertainty (or error) could be derived from a number of sources, including the
level of accuracy provided by a measuring instrument, the statistical nature of the value being
measured, or approximations made in the determination of the value. Often, this uncertainty is
represented as the standard deviation of the value. When using these values as function inputs,
they convey an uncertainty on the new results. Propagating the uncertainty by hand can be
tedious, possibly prohibitively so in the case of calculations that require machine computation
to be feasible. As such, it has been found prudent to automate the propagation of error as an
extension of the calculations themselves (Giordano, 2016; Lebigot, 2009). To the best of our
knowledge, there is no currently maintained C++ library to facilitate this kind of uncertainty
propagation. As C++ is an important language in the development of scientific software and
high-performance computing, Sigma has been developed in an attempt to fill this gap.

Mathematics
Assume 𝐹(𝐴) is a function of 𝐴, where 𝐴 is a set whose elements are some or all of the
elements of the sequence of 𝑛 variables (𝑎𝑖)

𝑛
𝑖=1. These elements are defined as 𝑎𝑖 = ̄𝑎𝑖 ± 𝜎𝑎𝑖

,
where ̄𝑎𝑖 is the mean value of the variable and 𝜎𝑎𝑖

is called the uncertainty and is assumed to
represent an error measure closely related to the standard deviation of a random variable. The
linear uncertainty of 𝐹(𝐴) can be determined as

𝜎𝐹 ≈
√√√√
⎷

𝑛
∑
𝑖=1

⎛⎜
⎝
(𝜕𝐹

𝜕𝑎𝑖
∣
𝑎𝑖=�̄�𝑖

𝜎𝑎𝑖
)

2

+ 2
𝑛
∑
𝑗=𝑖+1

⎛⎜
⎝
(𝜕𝐹
𝜕𝑎𝑖

)
𝑎𝑖=�̄�𝑖

(𝜕𝐹
𝜕𝑎𝑗

)
𝑎𝑗=�̄�𝑗

𝜎𝑎𝑖𝑎𝑗
⎞⎟
⎠

⎞⎟
⎠
.

Note that for any element 𝑎𝑖 that is not a member of 𝐴, 𝜕𝐹
𝜕𝑎𝑖

= 0 and those terms vanish in
the summations. The term 𝜎𝑎𝑖𝑎𝑗

is the covariance of 𝑎𝑖 and 𝑎𝑗, defined as

𝜎𝑎𝑖𝑎𝑗
= 𝐸[(𝑎𝑖 −𝐸[𝑎𝑖]) (𝑎𝑗 −𝐸[𝑎𝑗])],

Waldrop, & Richard. (2025). Sigma: Uncertainty Propagation for C++. Journal of Open Source Software, 10(106), 7404. https://doi.org/10.
21105/joss.07404.

1

https://orcid.org/0000-0003-0442-193X
https://orcid.org/0000-0003-4235-5179
https://ror.org/041m9xr71
https://ror.org/04rswrd78
https://doi.org/10.21105/joss.07404
https://github.com/openjournals/joss-reviews/issues/7404
https://github.com/QCUncertainty/sigma
https://doi.org/10.5281/zenodo.14852780
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/baxmittens
https://github.com/YehorYudinIPP
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07404
https://doi.org/10.21105/joss.07404

where 𝐸[𝑎𝑖] is the expectation value of 𝑎𝑖. The covariances can be eliminated from the above
equation if the uncertainties of the variables are independent from one another, which is a
requirement imposed here. As such, the uncertainty of 𝐹(𝐴) when the members of 𝐴 are
independent from one another is simply

𝜎𝐹 ≈
√√√

⎷
∑
𝑎𝑖∈𝐴

(𝜕𝐹
𝜕𝑎𝑖

∣
𝑎𝑖=�̄�𝑖

𝜎𝑎𝑖
)

2

.

Next, we consider a set 𝐵 = {𝑥, 𝑦} where 𝑥 = 𝑥(𝑎𝑖, 𝑎𝑗) and 𝑦 = 𝑦(𝑎𝑗), i.e. the elements
of 𝐵 are functions of some number of independent variables. As the values of 𝑥 and 𝑦 are
dependent on the values of 𝑎𝑖 and 𝑎𝑗, they are said to be functionally correlated to the
independent variables (Giordano, 2016) and their uncertainties are easily calculated from the
previous equation. Given the function 𝐺(𝐵), the value of 𝜎𝐺 cannot be calculated from the
previous equation as it does not account for the functional correlation of the elements of 𝐵.
The uncertainty of 𝐺 can be properly determined by application of the chain rule to relate the
independent variables to 𝐺 through their relationships with the dependent variables

𝜎𝐺 ≈
√√√√

⎷
((𝜕𝐺

𝜕𝑥
𝜕𝑥
𝜕𝑎𝑖

)
𝑎𝑖=�̄�𝑖

𝜎𝑎𝑖
)

2

+⎛⎜
⎝
(𝜕𝐺
𝜕𝑥

𝜕𝑥
𝜕𝑎𝑗

+ 𝜕𝐺
𝜕𝑦

𝜕𝑦
𝜕𝑎𝑗

)
𝑎𝑗=�̄�𝑗

𝜎𝑎𝑗
⎞⎟
⎠

2

.

Usage
Sigma is header-only, so it only needs to be findable by the dependent project to be used. The
library is buildable with CMake (CMake, 2024) and utilizes the CMaize (Crandall et al., 2024)
extension to handle configuration, dependency management, and building the tests and/or
documentation. To use the library in a project, simply add #include <sigma/sigma.hpp> in
an appropriate location within the project’s source.

The primary component of Sigma is the Uncertain<T> class, templated on the floating point
type used to represent the mean and uncertainty of the variable. A simple construction of an
uncertain floating point value can be accomplished by passing the mean and a value for the
uncertainty (such as a standard deviation):

using numeric_t = double;

numeric_t a_mean{100.0};

numeric_t a_sd{1.0};

sigma::Uncertain<numeric_t> a{a_mean, a_sd};

std::cout << a << std::endl; // Prints: 100+/-1

The same can be accomplished in a less verbose way as sigma::Uncertain a{100.0, 1.0}.
Sigma also provides the typedefs UFloat and UDouble (uncertain float and double, respec-
tively) for convenience.

Basic arithmetic with certain or uncertain values is accomplished trivially,

sigma::Uncertain a{1.0, 0.1};

sigma::Uncertain b{2.0, 0.2};

auto c = a + 2.0; // 3.0+/-0.1

auto d = a * 2.0; // 2.0+/-0.2

auto e = a + b; // 3.0+/-0.2236

auto f = a * b; // 2.0+/-0.2828

The resulting variables here are functionally correlated to a and/or b, meaning the operation e

- c would return an instance with the value 0 ± 0.2 as the contributions from a would exactly
negate each other.

Waldrop, & Richard. (2025). Sigma: Uncertainty Propagation for C++. Journal of Open Source Software, 10(106), 7404. https://doi.org/10.
21105/joss.07404.

2

https://doi.org/10.21105/joss.07404
https://doi.org/10.21105/joss.07404

Sigma also implements many of the most common math functions found in the C++ standard
library, such as those for trigonometry and rounding:

sigma::Uncertain radians{0.785398, 0.1};

sigma::Uncertain degrees{45.0, 0.1};

sigma::Uncertain decimal{1.2, 0.1};

auto to_degrees = sigma::degrees(radians); // 45.0000+/-5.7296

auto in_radians = sigma::radians(degrees); // 0.7854+/-0.0017

auto tangent = sigma::tan(radians); // 1.0000+/-0.2000

auto truncated = sigma::trunc(decimal); // 1.0+/-0.0

Sigma also has a limited degree of compatibility with the Eigen library (Eigen, 2024), allowing
for matrix operations and a number of linear solvers. Additional functionality is possible,
though not currently ensured. Linear algebra usage is partially limited by Sigma only being
suitable for the representation of real numbers, but support for complex numbers is intended
at a later time.

While inspired by uncertainties and Measurements.jl, Sigma is not a one-to-one translation
of either package. Sigma implements a method of tracking variable dependence similar to
those found in the other packages, with each instance tracking the independent variables that
it depends on and the contributions of those variables to the instance’s uncertainty. Function
names in Sigma use the naming convention of the C++ Standard Library where applicable,
and may differ from the names used in the other packages. uncertainties specifically allows
for the alteration of an independent variable’s uncertainty and on-the-fly re-evaluation for
dependent variables. Sigma does not replicate this feature, preferring a static evaluation of
uncertainties that is more consistent with the expected behavior for C++’s floating types.

Acknowledgements
This work was supported by the Ames National Laboratory’s Laboratory Directed Research
and Development (LDRD) program. The Ames Laboratory is operated for the U.S. DOE by
Iowa State University under contract # DE-AC02-07CH11358.

References
CMake. (2024). https://cmake.org/

Crandall, Z., Windus, T. L., & Richard, R. M. (2024). CMaize: Simplifying inter-package
modularity from the build up. The Journal of Chemical Physics, 160(9), 092502. https:
//doi.org/10.1063/5.0196384

Eigen. (2024). https://eigen.tuxfamily.org/

Giordano, M. (2016). Uncertainty propagation with functionally correlated quantities. ArXiv
e-Prints. https://arxiv.org/abs/1610.08716

Lebigot, E. O. (2009). Uncertainties: A Python package for calculations with uncertainties. In
GitHub repository. GitHub. https://github.com/lmfit/uncertainties

Waldrop, & Richard. (2025). Sigma: Uncertainty Propagation for C++. Journal of Open Source Software, 10(106), 7404. https://doi.org/10.
21105/joss.07404.

3

https://cmake.org/
https://doi.org/10.1063/5.0196384
https://doi.org/10.1063/5.0196384
https://eigen.tuxfamily.org/
https://arxiv.org/abs/1610.08716
https://github.com/lmfit/uncertainties
https://doi.org/10.21105/joss.07404
https://doi.org/10.21105/joss.07404

	Summary
	Statement of need
	Mathematics
	Usage
	Acknowledgements
	References

