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Summary
Principal component analysis (PCA) (Hotelling, 1933; Jolliffe, 2002; Pearson, 1901) is popular
for compressing, denoising, and interpreting high-dimensional data, but it underperforms on
binary, count, and compositional data because the objective assumes data is normally distributed.
Exponential family PCA (EPCA) (Collins et al., 2001) generalizes PCA to accommodate data
from any exponential family distribution, making it more suitable for fields where these data
types are common, such as geochemistry, marketing, genomics, political science, and machine
learning (Greenacre, 2021; Hastie et al., 2009).

ExpFamilyPCA.jl is a library for EPCA written in Julia, a dynamic language for scientific
computing (Bezanson et al., 2017). It is the first EPCA package in Julia and the first in any
language to support EPCA for multiple distributions.

Statement of Need
EPCA is used in reinforcement learning (Roy et al., 2005), sample debiasing (R. Huang &
Lee, 2023), and compositional analysis (Gan & Valdez, 2024). Wider adoption, however,
remains limited due to the lack of implementations. The only other EPCA package is written
in MATLAB and supports just one distribution (Chambrier, 2016). This is surprising, as other
Bregman-based optimization techniques have been successful in areas like mass spectrometry
(Nozaki & Nakamoto, 2017), ultrasound denoising (J. Huang & Yang, 2013), topological
data analysis (Edelsbrunner & Wagner, 2019), and robust clustering (Banerjee et al., 2005).
These successes suggest that EPCA holds untapped potential in signal processing and machine
learning.

The absence of a general EPCA library likely stems from the limited interoperability between
fast symbolic differentiation and optimization libraries in popular languages like Python and
C. Julia, by contrast, uses multiple dispatch which promotes high levels of generic code
reuse (Karpinski, 2019). Multiple dispatch allows ExpFamilyPCA.jl to integrate fast symbolic
differentiation (Gowda et al., 2022), optimization (Mogensen & Riseth, 2018), and numerically
stable computation (Mächler, 2015) without requiring costly API conversions.1 As a result,
ExpFamilyPCA.jl delivers speed, stability, and flexibility, with built-in support for most common
distributions (§ Supported Distributions) and flexible constructors for custom distributions (§
Custom Distributions).

1Symbolic differentiation is essential for flexibly specifying the EPCA objective (see documentation). While
algorithmic differentiation is faster in general, symbolic differentiation is performed only once to generate
a closed form for the optimizer (e.g., Optim.jl (Mogensen & Riseth, 2018)), making it more efficient here.
LogExpFunctions.jl (2024) (which implements ideas from Mächler (2015)) mitigates overflow and underflow in
exponential and logarithmic operations.
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Principal Component Analysis
Geometric Interpretation

Given a data matrix 𝑋 ∈ ℝ𝑛×𝑑 with 𝑛 observations and 𝑑 features, PCA seeks the closest
low-rank approximation Θ ∈ ℝ𝑛×𝑑 by minimizing the reconstruction error

minimize
Θ

1
2
‖𝑋 −Θ‖2𝐹

subject to rank (Θ) = 𝑘

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm. The optimal Θ is a 𝑘-dimensional linear subspace
that can be written as the product of the projected observations 𝐴 ∈ ℝ𝑛×𝑘 and the basis
𝑉 ∈ ℝ𝑘×𝑑:

𝑋 ≈ Θ = 𝐴𝑉 .

This suggests that each observation 𝑥𝑖 ∈ rows(𝑋) can be well-approximated by a linear
combination of 𝑘 basis vectors (the rows of 𝑉):

𝑥𝑖 ≈ 𝜃𝑖 = 𝑎𝑖𝑉

for 𝑖 = 1,… , 𝑛.

Probabilistic Interpretation

The PCA objective is equivalent to maximum likelihood estimation for a Gaussian model.
Under this lens, each observation 𝑥𝑖 is a noisy realization of a 𝑑-dimensional Gaussian at
𝜃𝑖 ∈ rows(Θ):

𝑥𝑖 ∼ 𝒩(𝜃𝑖, 𝐼).

To recover the latent structure Θ, PCA solves

maximize
Θ

𝑛
∑
𝑖=1

logℒ(𝑥𝑖; 𝜃𝑖)

subject to rank (Θ) = 𝑘

where ℒ is the likelihood function.

Exponential Family PCA
Exponential Family

Following Forster & Warmuth (2002), we define the exponential family as the set of distributions
with densities of the form

𝑝𝜃(𝑥) = exp(𝜃 ⋅ 𝑥 − 𝐺(𝜃))

where 𝜃 is the natural parameter and 𝐺 is the log-partition function.
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Link Function

The link function 𝑔(𝜃) connects the natural parameter 𝜃 to the mean parameter 𝜇 of an
exponential family distribution. It is defined as the gradient of the log-partition function 𝐺(𝜃):

𝜇 = 𝑔(𝜃) = ∇𝐺(𝜃).

The link function serves a role analogous to that in generalized linear models (GLMs) (McCullagh
& Nelder, 1989). In GLMs, the link function connects the linear predictor to the mean of
the distribution, enabling flexibility in modeling various data types. Similarly, in EPCA, the
link function maps the low-dimensional latent variables to the expectation parameters of
the exponential family, thereby generalizing the linear assumptions of traditional PCA to
accommodate diverse distributions (see appendix).

Bregman Divergences

EPCA extends the probabilistic interpretation of PCA using a measure of statistical difference
called the Bregman divergence (Bregman, 1967; Efron, 2004). The Bregman divergence 𝐵𝐹
for a strictly convex, continuously differentiable function 𝐹 is

𝐵𝐹(𝑝‖𝑞) = 𝐹(𝑝) − 𝐹(𝑞) − ⟨∇𝐹(𝑞), 𝑝 − 𝑞⟩.

This can be interpreted as the difference between 𝐹(𝑝) and its linear approximation about
𝑞. When 𝐹 is the convex conjugate of the log-partition function of an exponential family
distribution, minimizing the Bregman divergence corresponds to maximizing the associated
log-likelihood (Azoury & Warmuth, 2001; Forster & Warmuth, 2002) (see documentation).

Loss Function

EPCA generalizes the PCA objective as a Bregman divergence between the data 𝑋 and the
expectation parameters 𝑔(Θ):

minimize
Θ

𝐵𝐹(𝑋‖𝑔(Θ))

subject to rank (Θ) = 𝑘

where

• 𝑔(𝜃) is the link function and the gradient of 𝐺,
• 𝐺(𝜃) is a strictly convex, continuously differentiable function (usually the log-partition

of an exponential family distribution),
• and 𝐹(𝜇) is the convex conjugate of 𝐺 defined by

𝐹(𝜇) = max
𝜃

⟨𝜇, 𝜃⟩ − 𝐺(𝜃).

This suggests that data from the exponential family is well-approximated by expectation
parameters

𝑥𝑖 ≈ 𝑔(𝜃𝑖) = 𝑔(𝑎𝑖𝑉 ).
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Regularization

Following Collins et al. (2001), we introduce a regularization term to ensure the optimum
converges

minimize
Θ

𝐵𝐹(𝑋‖𝑔(Θ)) + 𝜖𝐵𝐹(𝜇0‖𝑔(Θ))

subject to rank (Θ) = 𝑘

where 𝜖 > 0 and 𝜇0 ∈ range(𝑔).2

Example: Poisson EPCA

The Poisson EPCA objective is the generalized Kullback-Leibler (KL) divergence (see appendix),
making Poisson EPCA ideal for compressing discrete distribution data.

This is useful in applications like belief compression in reinforcement learning (Roy et al., 2005),
where high-dimensional belief states can be effectively reduced with minimal information loss.
Below we recreate similar figures3 to Roy & Gordon (2002) and Roy et al. (2005) and observe
that Poisson EPCA almost perfectly reconstructs a 41-dimensional belief distribution using
just 5 basis components. For a larger environment with 200 states, PCA struggles even with
10 basis components.

Figure 1: Left - KL Divergence for Poisson EPCA versus PCA. Right - Reconstructions from the models.

API

Supported Distributions
ExpFamilyPCA.jl includes efficient EPCA implementations for several exponential family
distributions.

Julia Description
BernoulliEPCA For binary data

2In practice, we allow 𝜖 ≥ 0, because special cases of EPCA like traditional PCA are well-known to converge
without regularization. Similarly, we pick 𝜇0 to simplify terms in the objective.

3See Figure 3(a) in Roy & Gordon (2002) and Figure 12(c) in Roy et al. (2005).
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Julia Description
BinomialEPCA For count data with a fixed number of trials
ContinuousBernoulliEPCA For modeling probabilities between 0 and 1
GammaEPCA For positive continuous data
GaussianEPCA Standard PCA for real-valued data
NegativeBinomialEPCA For over-dispersed count data
ParetoEPCA For modeling heavy-tailed distributions
PoissonEPCA For count and discrete distribution data
WeibullEPCA For modeling life data and survival analysis

Custom Distributions
When working with custom distributions, certain specifications are often more convenient and
computationally efficient than others. For example, inducing the gamma EPCA objective from
the log-partition 𝐺(𝜃) = − log(−𝜃) and its derivative 𝑔(𝜃) = −1/𝜃 is much simpler than
implementing the full the Itakura-Saito distance (Itakura & Saito, 1968) (see appendix):

𝐷(𝑃(𝜔), 𝑃 (𝜔)) = 1
2𝜋

∫
𝜋

−𝜋
[𝑃(𝜔)
𝑃(𝜔)

− log 𝑃(𝜔)
𝑃𝜔

− 1]𝑑𝜔.

In ExpFamilyPCA.jl, we would write:

G(θ) = -log(-θ)

g(θ) = -1 / θ

gamma_epca = EPCA(indim, outdim, G, g, Val((:G, :g)); options = NegativeDomain())

A lengthier discussion of the EPCA constructors and math is provided in the documentation.

Usage
Each EPCA object supports a three-method interface: fit!, compress, and decompress. fit!
trains the model and returns the compressed training data; compress returns compressed input;
and decompress reconstructs the original data from the compressed representation.

X = sample_from_gamma(n1, indim) # matrix of gamma-distributed data

Y = sample_from_gamma(n2, indim)

X_compressed = fit!(gamma_epca, X)

Y_compressed = compress(gamma_epca, Y)

Y_reconstructed = decompress(gamma_epca, Y_compressed)
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