
ExpFamilyPCA.jl: A Julia Package for Exponential
Family Principal Component Analysis
Logan Mondal Bhamidipaty 1, Mykel J. Kochenderfer 1, and Trevor
Hastie 1

1 Stanford University
DOI: 10.21105/joss.07403

Software
• Review
• Repository
• Archive

Editor: Oskar Laverny
Reviewers:

• @ManuelStapper
• @gdalle
• @dufourc1

Submitted: 12 October 2024
Published: 14 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Principal component analysis (PCA) (Hotelling, 1933; Jolliffe, 2002; Pearson, 1901) is popular
for compressing, denoising, and interpreting high-dimensional data, but it underperforms on
binary, count, and compositional data because the objective assumes data is normally distributed.
Exponential family PCA (EPCA) (Collins et al., 2001) generalizes PCA to accommodate data
from any exponential family distribution, making it more suitable for fields where these data
types are common, such as geochemistry, marketing, genomics, political science, and machine
learning (Greenacre, 2021; Hastie et al., 2009).

ExpFamilyPCA.jl is a library for EPCA written in Julia, a dynamic language for scientific
computing (Bezanson et al., 2017). It is the first EPCA package in Julia and the first in any
language to support EPCA for multiple distributions.

Statement of Need
EPCA is used in reinforcement learning (Roy et al., 2005), sample debiasing (R. Huang &
Lee, 2023), and compositional analysis (Gan & Valdez, 2024). Wider adoption, however,
remains limited due to the lack of implementations. The only other EPCA package is written
in MATLAB and supports just one distribution (Chambrier, 2016). This is surprising, as other
Bregman-based optimization techniques have been successful in areas like mass spectrometry
(Nozaki & Nakamoto, 2017), ultrasound denoising (J. Huang & Yang, 2013), topological
data analysis (Edelsbrunner & Wagner, 2019), and robust clustering (Banerjee et al., 2005).
These successes suggest that EPCA holds untapped potential in signal processing and machine
learning.

The absence of a general EPCA library likely stems from the limited interoperability between
fast symbolic differentiation and optimization libraries in popular languages like Python and
C. Julia, by contrast, uses multiple dispatch which promotes high levels of generic code
reuse (Karpinski, 2019). Multiple dispatch allows ExpFamilyPCA.jl to integrate fast symbolic
differentiation (Gowda et al., 2022), optimization (Mogensen & Riseth, 2018), and numerically
stable computation (Mächler, 2015) without requiring costly API conversions.1 As a result,
ExpFamilyPCA.jl delivers speed, stability, and flexibility, with built-in support for most common
distributions (§ Supported Distributions) and flexible constructors for custom distributions (§
Custom Distributions).

1Symbolic differentiation is essential for flexibly specifying the EPCA objective (see documentation). While
algorithmic differentiation is faster in general, symbolic differentiation is performed only once to generate
a closed form for the optimizer (e.g., Optim.jl (Mogensen & Riseth, 2018)), making it more efficient here.
LogExpFunctions.jl (2024) (which implements ideas from Mächler (2015)) mitigates overflow and underflow in
exponential and logarithmic operations.

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

1

https://orcid.org/0009-0001-3978-9462
https://orcid.org/0000-0002-7238-9663
https://orcid.org/0000-0002-0164-3142
https://doi.org/10.21105/joss.07403
https://github.com/openjournals/joss-reviews/issues/7403
https://github.com/sisl/ExpFamilyPCA.jl
https://doi.org/10.5281/zenodo.14624991
https://www.actuarial.science
https://orcid.org/0000-0002-7508-999X
https://github.com/ManuelStapper
https://github.com/gdalle
https://github.com/dufourc1
https://creativecommons.org/licenses/by/4.0/
https://sisl.github.io/ExpFamilyPCA.jl/v2.0/math/objectives/#2.-Using-F-and-f
https://doi.org/10.21105/joss.07403

Principal Component Analysis
Geometric Interpretation

Given a data matrix 𝑋 ∈ ℝ𝑛×𝑑 with 𝑛 observations and 𝑑 features, PCA seeks the closest
low-rank approximation Θ ∈ ℝ𝑛×𝑑 by minimizing the reconstruction error

minimize
Θ

1
2
‖𝑋 −Θ‖2𝐹

subject to rank (Θ) = 𝑘

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm. The optimal Θ is a 𝑘-dimensional linear subspace
that can be written as the product of the projected observations 𝐴 ∈ ℝ𝑛×𝑘 and the basis
𝑉 ∈ ℝ𝑘×𝑑:

𝑋 ≈ Θ = 𝐴𝑉 .

This suggests that each observation 𝑥𝑖 ∈ rows(𝑋) can be well-approximated by a linear
combination of 𝑘 basis vectors (the rows of 𝑉):

𝑥𝑖 ≈ 𝜃𝑖 = 𝑎𝑖𝑉

for 𝑖 = 1,… , 𝑛.

Probabilistic Interpretation

The PCA objective is equivalent to maximum likelihood estimation for a Gaussian model.
Under this lens, each observation 𝑥𝑖 is a noisy realization of a 𝑑-dimensional Gaussian at
𝜃𝑖 ∈ rows(Θ):

𝑥𝑖 ∼ 𝒩(𝜃𝑖, 𝐼).

To recover the latent structure Θ, PCA solves

maximize
Θ

𝑛
∑
𝑖=1

logℒ(𝑥𝑖; 𝜃𝑖)

subject to rank (Θ) = 𝑘

where ℒ is the likelihood function.

Exponential Family PCA
Exponential Family

Following Forster & Warmuth (2002), we define the exponential family as the set of distributions
with densities of the form

𝑝𝜃(𝑥) = exp(𝜃 ⋅ 𝑥 − 𝐺(𝜃))

where 𝜃 is the natural parameter and 𝐺 is the log-partition function.

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

2

https://doi.org/10.21105/joss.07403

Link Function

The link function 𝑔(𝜃) connects the natural parameter 𝜃 to the mean parameter 𝜇 of an
exponential family distribution. It is defined as the gradient of the log-partition function 𝐺(𝜃):

𝜇 = 𝑔(𝜃) = ∇𝐺(𝜃).

The link function serves a role analogous to that in generalized linear models (GLMs) (McCullagh
& Nelder, 1989). In GLMs, the link function connects the linear predictor to the mean of
the distribution, enabling flexibility in modeling various data types. Similarly, in EPCA, the
link function maps the low-dimensional latent variables to the expectation parameters of
the exponential family, thereby generalizing the linear assumptions of traditional PCA to
accommodate diverse distributions (see appendix).

Bregman Divergences

EPCA extends the probabilistic interpretation of PCA using a measure of statistical difference
called the Bregman divergence (Bregman, 1967; Efron, 2004). The Bregman divergence 𝐵𝐹
for a strictly convex, continuously differentiable function 𝐹 is

𝐵𝐹(𝑝‖𝑞) = 𝐹(𝑝) − 𝐹(𝑞) − ⟨∇𝐹(𝑞), 𝑝 − 𝑞⟩.

This can be interpreted as the difference between 𝐹(𝑝) and its linear approximation about
𝑞. When 𝐹 is the convex conjugate of the log-partition function of an exponential family
distribution, minimizing the Bregman divergence corresponds to maximizing the associated
log-likelihood (Azoury & Warmuth, 2001; Forster & Warmuth, 2002) (see documentation).

Loss Function

EPCA generalizes the PCA objective as a Bregman divergence between the data 𝑋 and the
expectation parameters 𝑔(Θ):

minimize
Θ

𝐵𝐹(𝑋‖𝑔(Θ))

subject to rank (Θ) = 𝑘

where

• 𝑔(𝜃) is the link function and the gradient of 𝐺,
• 𝐺(𝜃) is a strictly convex, continuously differentiable function (usually the log-partition

of an exponential family distribution),
• and 𝐹(𝜇) is the convex conjugate of 𝐺 defined by

𝐹(𝜇) = max
𝜃

⟨𝜇, 𝜃⟩ − 𝐺(𝜃).

This suggests that data from the exponential family is well-approximated by expectation
parameters

𝑥𝑖 ≈ 𝑔(𝜃𝑖) = 𝑔(𝑎𝑖𝑉).

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

3

https://sisl.github.io/ExpFamilyPCA.jl/v2.0/math/appendix/gaussian/
https://sisl.github.io/ExpFamilyPCA.jl/v2.0/math/bregman/
https://doi.org/10.21105/joss.07403

Regularization

Following Collins et al. (2001), we introduce a regularization term to ensure the optimum
converges

minimize
Θ

𝐵𝐹(𝑋‖𝑔(Θ)) + 𝜖𝐵𝐹(𝜇0‖𝑔(Θ))

subject to rank (Θ) = 𝑘

where 𝜖 > 0 and 𝜇0 ∈ range(𝑔).2

Example: Poisson EPCA

The Poisson EPCA objective is the generalized Kullback-Leibler (KL) divergence (see appendix),
making Poisson EPCA ideal for compressing discrete distribution data.

This is useful in applications like belief compression in reinforcement learning (Roy et al., 2005),
where high-dimensional belief states can be effectively reduced with minimal information loss.
Below we recreate similar figures3 to Roy & Gordon (2002) and Roy et al. (2005) and observe
that Poisson EPCA almost perfectly reconstructs a 41-dimensional belief distribution using
just 5 basis components. For a larger environment with 200 states, PCA struggles even with
10 basis components.

Figure 1: Left - KL Divergence for Poisson EPCA versus PCA. Right - Reconstructions from the models.

API

Supported Distributions
ExpFamilyPCA.jl includes efficient EPCA implementations for several exponential family
distributions.

Julia Description
BernoulliEPCA For binary data

2In practice, we allow 𝜖 ≥ 0, because special cases of EPCA like traditional PCA are well-known to converge
without regularization. Similarly, we pick 𝜇0 to simplify terms in the objective.

3See Figure 3(a) in Roy & Gordon (2002) and Figure 12(c) in Roy et al. (2005).

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

4

https://sisl.github.io/ExpFamilyPCA.jl/v2.0/math/appendix/poisson/
https://doi.org/10.21105/joss.07403

Julia Description
BinomialEPCA For count data with a fixed number of trials
ContinuousBernoulliEPCA For modeling probabilities between 0 and 1
GammaEPCA For positive continuous data
GaussianEPCA Standard PCA for real-valued data
NegativeBinomialEPCA For over-dispersed count data
ParetoEPCA For modeling heavy-tailed distributions
PoissonEPCA For count and discrete distribution data
WeibullEPCA For modeling life data and survival analysis

Custom Distributions
When working with custom distributions, certain specifications are often more convenient and
computationally efficient than others. For example, inducing the gamma EPCA objective from
the log-partition 𝐺(𝜃) = − log(−𝜃) and its derivative 𝑔(𝜃) = −1/𝜃 is much simpler than
implementing the full the Itakura-Saito distance (Itakura & Saito, 1968) (see appendix):

𝐷(𝑃(𝜔), 𝑃 (𝜔)) = 1
2𝜋

∫
𝜋

−𝜋
[𝑃(𝜔)
𝑃(𝜔)

− log 𝑃(𝜔)
𝑃𝜔

− 1]𝑑𝜔.

In ExpFamilyPCA.jl, we would write:

G(θ) = -log(-θ)

g(θ) = -1 / θ

gamma_epca = EPCA(indim, outdim, G, g, Val((:G, :g)); options = NegativeDomain())

A lengthier discussion of the EPCA constructors and math is provided in the documentation.

Usage
Each EPCA object supports a three-method interface: fit!, compress, and decompress. fit!
trains the model and returns the compressed training data; compress returns compressed input;
and decompress reconstructs the original data from the compressed representation.

X = sample_from_gamma(n1, indim) # matrix of gamma-distributed data

Y = sample_from_gamma(n2, indim)

X_compressed = fit!(gamma_epca, X)

Y_compressed = compress(gamma_epca, Y)

Y_reconstructed = decompress(gamma_epca, Y_compressed)

Acknowledgments
We thank Ryan Tibshirani, Arec Jamgochian, Robert Moss, and Dylan Asmar for their help
and guidance.

References
Azoury, K. S., & Warmuth, M. K. (2001). Relative loss bounds for on-line density estimation

with the exponential family of distributions. Machine Learning, 43, 211–246. https:
//doi.org/10.1023/A:1010896012157

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

5

https://sisl.github.io/ExpFamilyPCA.jl/v2.0/math/appendix/gamma/
https://sisl.github.io/ExpFamilyPCA.jl/v2.0/math/objectives/
https://doi.org/10.1023/A:1010896012157
https://doi.org/10.1023/A:1010896012157
https://doi.org/10.21105/joss.07403

Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman
divergences. Journal of Machine Learning Research, 6(58), 1705–1749. http://jmlr.org/
papers/v6/banerjee05b.html

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bregman, L. M. (1967). The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics, 7 (3), 200–217. https://doi.org/
10.1016/0041-5553(67)90040-7

Chambrier, G. de. (2016). E-PCA. https://github.com/gpldecha/e-pca

Collins, M., Dasgupta, S., & Schapire, R. E. (2001). A generalization of principal components
analysis to the exponential family. Advances in Neural Information Processing Systems, 14.
https://doi.org/10.7551/mitpress/1120.003.0084

Edelsbrunner, H., & Wagner, H. (2019). Topological data analysis with Bregman divergences.
Journal of Computational Geometry, Vol. 9 No. 2 (2018): Special Issue of Selected Papers
from SoCG 2017. https://doi.org/10.20382/JOCG.V9I2A6

Efron, B. (2004). The estimation of prediction error. Journal of the American Statistical
Association, 99(467), 619–632. https://doi.org/10.1198/016214504000000692

Forster, J., & Warmuth, M. K. (2002). Relative expected instantaneous loss bounds. Journal
of Computer and System Sciences, 64(1), 76–102. https://doi.org/10.1006/jcss.2001.1798

Gan, G., & Valdez, E. A. (2024). Compositional Data Regression in Insurance with Exponential
Family PCA. Variance, 17 (1).

Gowda, S., Ma, Y., Cheli, A., Gwóźzdź, M., Shah, V. B., Edelman, A., & Rackauckas,
C. (2022). High-performance symbolic-numerics via multiple dispatch. Association for
Computing Machinery Communications in Computer Algebra, 55(3), 92–96. https://doi.
org/10.1145/3511528.3511535

Greenacre, M. (2021). Compositional data analysis. Annual Review of Statistics and Its
Application, 8(1), 271–299.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The Elements
of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2). Springer.
https://doi.org/10.1007/978-0-387-84858-7

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 498–520. https://doi.org/10.1037/h0071325

Huang, J., & Yang, X. (2013). Fast reduction of speckle noise in real ultrasound images.
Signal Processing, 93(4), 684–694. https://doi.org/10.1016/j.sigpro.2012.09.005

Huang, R., & Lee, Y. (2023). Debiasing sample loadings and scores in exponential family PCA
for sparse count data. https://arxiv.org/abs/2312.13430

Itakura, F., & Saito, S. (1968). Analysis synthesis telephony based on the maximum likelihood
method. Proceedings of the 6th International Congress on Acoustics, C-17-C-20.

Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.
https://doi.org/10.1007/0-387-22440-8_13

Karpinski, S. (2019). The unreasonable effectiveness of multiple dispatch. Conference Talk at
JuliaCon 2019, available at https://www.youtube.com/watch?v=kc9HwsxE1OY.

LogExpFunctions.jl. (2024). GitHub. https://github.com/JuliaStats/LogExpFunctions.jl

Mächler, M. (2015). Accurately computing log(1−exp(−|𝑎|) assessed by the ‘Rmpfr‘ package.

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

6

http://jmlr.org/papers/v6/banerjee05b.html
http://jmlr.org/papers/v6/banerjee05b.html
https://doi.org/10.1137/141000671
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://github.com/gpldecha/e-pca
https://doi.org/10.7551/mitpress/1120.003.0084
https://doi.org/10.20382/JOCG.V9I2A6
https://doi.org/10.1198/016214504000000692
https://doi.org/10.1006/jcss.2001.1798
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1037/h0071325
https://doi.org/10.1016/j.sigpro.2012.09.005
https://arxiv.org/abs/2312.13430
https://doi.org/10.1007/0-387-22440-8_13
https://www.youtube.com/watch?v=kc9HwsxE1OY
https://github.com/JuliaStats/LogExpFunctions.jl
https://doi.org/10.21105/joss.07403

https://doi.org/10.13140/RG.2.2.11834.70084

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). Chapman &
Hall/CRC. https://doi.org/10.1201/9780203753736

Mogensen, P. K., & Riseth, A. N. (2018). Optim: A mathematical optimization package for
Julia. Journal of Open Source Software, 3(24), 615. https://doi.org/10.21105/joss.00615

Nozaki, Y., & Nakamoto, T. (2017). Itakura-Saito distance based autoencoder for dimension-
ality reduction of mass spectra. Chemometrics and Intelligent Laboratory Systems, 167,
63–68. https://doi.org/10.1016/j.chemolab.2017.05.002

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),
559–572. https://doi.org/10.1080/14786440109462720

Roy, N., & Gordon, G. (2002). Exponential family PCA for belief compression in POMDPs. In
S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in Neural Information Processing
Systems (Vol. 15). MIT Press. https://proceedings.neurips.cc/paper_files/paper/2002/
file/a11f9e533f28593768ebf87075ab34f2-Paper.pdf

Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate POMDP solutions through
belief compression. Journal of Artificial Intelligence Research, 23, 1–40. https://doi.org/
10.1613/jair.1496

Bhamidipaty et al. (2025). ExpFamilyPCA.jl: A Julia Package for Exponential Family Principal Component Analysis. Journal of Open Source
Software, 10(105), 7403. https://doi.org/10.21105/joss.07403.

7

https://doi.org/10.13140/RG.2.2.11834.70084
https://doi.org/10.1201/9780203753736
https://doi.org/10.21105/joss.00615
https://doi.org/10.1016/j.chemolab.2017.05.002
https://doi.org/10.1080/14786440109462720
https://proceedings.neurips.cc/paper_files/paper/2002/file/a11f9e533f28593768ebf87075ab34f2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/a11f9e533f28593768ebf87075ab34f2-Paper.pdf
https://doi.org/10.1613/jair.1496
https://doi.org/10.1613/jair.1496
https://doi.org/10.21105/joss.07403

	Summary
	Statement of Need
	Principal Component Analysis
	Geometric Interpretation
	Probabilistic Interpretation

	Exponential Family PCA
	Exponential Family
	Link Function
	Bregman Divergences
	Loss Function
	Regularization
	Example: Poisson EPCA

	API
	Supported Distributions
	Custom Distributions
	Usage

	Acknowledgments
	References

