
TorchSurv: A Lightweight Package for Deep Survival
Analysis
Mélodie Monod 1, Peter Krusche 1, Qian Cao2, Berkman Sahiner2,
Nicholas Petrick2, David Ohlssen3, and Thibaud Coroller 3¶

1 Novartis Pharma AG, Switzerland 2 Center for Devices and Radiological Health, Food and Drug
Administration, MD, USA 3 Novartis Pharmaceuticals Corporation, NJ, USA ¶ Corresponding author

DOI: 10.21105/joss.07341

Software
• Review
• Repository
• Archive

Editor: Kanishka B. Narayan
Reviewers:

• @XinyiEmilyZhang
• @rich2355

Submitted: 24 July 2024
Published: 30 December 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
TorchSurv is a Python package that serves as a companion tool to perform deep survival model-
ing within the PyTorch environment (Paszke et al., 2019). With its lightweight design, minimal
input requirements, full PyTorch backend, and freedom from restrictive parameterizations,
TorchSurv facilitates efficient deep survival model implementation and is particularly beneficial
for high-dimensional and complex data analyses. At its core, TorchSurv features calculations
of log-likelihoods for prominent survival models (Cox proportional hazards model (Cox, 1972),
Weibull Accelerated Time Failure (AFT) model (Carroll, 2003)) and offers evaluation metrics,
including the time-dependent Area Under the Receiver Operating Characteristic (ROC) curve
(AUC), the Concordance index (C-index) and the Brier Score. TorchSurv has been rigorously
tested using both open-source and synthetically generated survival data, against R and Python
packages. The package is thoroughly documented and includes illustrative examples. The
latest documentation for TorchSurv can be found on our website.

Statement of need
Survival analysis plays a crucial role in various domains, such as medicine, economics or
engineering. Sophisticated survival analysis using deep learning, often referred to as “deep
survival analysis,” unlocks new opportunities to leverage new data types and uncover intricate
relationships. However, performing comprehensive deep survival analysis remains challenging.
Key issues include the lack of flexibility in existing tools to define survival model parameters
with custom architectures and limitations in handling complex, high-dimensional datasets.
Indeed, existing frameworks often lack the computational efficiency necessary to process large
datasets efficiently, making them less suitable for real-world applications where time and
resource constraints are paramount.

To address these gaps, we propose a library that allows users to define survival model parameters
using custom PyTorch-based neural network architectures. By combining computational
efficiency with ease of use, this toolbox opens new opportunities to advance deep survival
analysis research and application. Figure 1 compares the functionalities of TorchSurv with
those of auton-survival (Nagpal et al., 2022), pycox (Kvamme et al., 2019), torchlife

(Abeywardana, 2021), scikit-survival (Pölsterl, 2020), lifelines (Davidson-Pilon, 2019),
and deepsurv (Katzman et al., 2018). We notice that existing libraries constrain users to
predefined functional forms for defining the parameters (e.g., linear function of covariates).
Additionally, while there exist log-likelihood functions in the libraries, they cannot be leveraged.
The limitations on the log-likelihood functions include protected functions (locked model
architecture), specialized input requirements (format or class type), and reliance on external
libraries like NumPy or Pandas. Dependence on external libraries hinders automatic gradient

Monod et al. (2024). TorchSurv: A Lightweight Package for Deep Survival Analysis. Journal of Open Source Software, 9(104), 7341.
https://doi.org/10.21105/joss.07341.

1

https://orcid.org/0000-0001-6448-2051
https://orcid.org/0009-0003-2541-5181
https://orcid.org/0000-0001-7662-8724
https://doi.org/10.21105/joss.07341
https://github.com/openjournals/joss-reviews/issues/7341
https://github.com/Novartis/torchsurv
https://doi.org/10.5281/zenodo.14517267
https://orcid.org/0000-0001-8483-6216
https://github.com/XinyiEmilyZhang
https://github.com/rich2355
https://creativecommons.org/licenses/by/4.0/
https://pypi.org/project/torchsurv/
https://opensource.nibr.com/torchsurv/benchmarks.html
https://opensource.nibr.com/torchsurv/
https://doi.org/10.21105/joss.07341

calculation within PyTorch. Additionally, the implementation of likelihood functions instead of
log-likelihood functions, as done by some packages, introduces numerical instability.

Figure 1: Survival analysis libraries in Python. 1(Nagpal et al., 2022), 2(Kvamme et al., 2019),
3(Abeywardana, 2021), 4(Pölsterl, 2020), 5(Davidson-Pilon, 2019), 6(Katzman et al., 2018). A green
tick indicates a fully supported feature, a red cross indicates an unsupported feature, a blue crossed tick
indicates a partially supported feature. For computing the concordance index, pycox requires using the
estimated survival function as the risk score and does not support other types of time-dependent risk
scores. scikit-survival does not support time-dependent risk scores neither for the concordance index
nor for the AUC computation. Additionally, both pycox and scikit-survival impose the use of inverse
probability of censoring weighting (IPCW) for subject-specific weights. scikit-survival only offers the
Breslow approximation of the Cox partial log-likelihood in case of ties in event time.

Functionality

Loss functions
Cox loss function. The Cox loss function is defined as the negative of the Cox proportional
hazards model’s partial log-likelihood (Cox, 1972). The function requires the subject-specific
log relative hazards and the survival response (i.e., event indicator and time-to-event or
time-to-censoring). The log relative hazards should be obtained from a PyTorch-based model
pre-specified by the user. In case of ties in the event times, the user can choose between the
Breslow method (Breslow, 1975) and the Efron method (Efron, 1977) to approximate the Cox
partial log-likelihood.

from torchsurv.loss import cox

PyTorch model outputs one log hazard per observation

my_cox_model = MyPyTorchCoxModel()

for data in dataloader:

x, event, time = data # covariate, event indicator, time

log_hzs = my_cox_model(x) # torch.Size([64, 1]), if batch size is 64

loss = cox.neg_partial_log_likelihood(log_hzs, event, time)

loss.backward() # native torch backend

Weibull loss function. The Weibull loss function is defined as the negative of the Weibull
AFT’s log-likelihood (Carroll, 2003). The function requires the subject-specific log scale and
log shape of the Weibull distribution and the survival response. The log parameters of the
Weibull distribution should be obtained from a PyTorch-based model pre-specified by the user.

from torchsurv.loss import weibull

Monod et al. (2024). TorchSurv: A Lightweight Package for Deep Survival Analysis. Journal of Open Source Software, 9(104), 7341.
https://doi.org/10.21105/joss.07341.

2

https://doi.org/10.21105/joss.07341

PyTorch model outputs two Weibull parameters per observation

my_weibull_model = MyPyTorchWeibullModel()

for data in dataloader:

x, event, time = data

log_params = my_weibull_model(x) # torch.Size([64, 2]), if batch size is 64

loss = weibull.neg_log_likelihood(log_params, event, time)

loss.backward()

Log hazard can be obtained from Weibull parameters

log_hzs = weibull.log_hazard(log_params, time)

Momentum. Momentum helps train the model when the batch size is greatly limited by
computational resources (i.e., large files). This impacts the stability of model optimization,
especially when rank-based loss is used. Inspired by MoCO (He et al., 2020), we implemented
a momentum loss that decouples batch size from survival loss, increasing the effective batch
size and allowing robust training of a model, even when using a very limited batch size (e.g.,
≤ 16).

from torchsurv.loss import Momentum

my_cox_model = MyPyTorchCoxModel()

my_cox_loss = cox.neg_partial_log_likelihood # works with any TorchSurv loss

model_momentum = Momentum(backbone=my_cox_model, loss=my_cox_loss)

for data in dataloader:

x, event, time = data

loss = model_momentum(x, event, time) # torch.Size([16, 1])

loss.backward()

Inference is computed with target network (k)

log_hzs = model_momentum.infer(x) # torch.Size([16, 1])

Evaluation Metrics Functions
The TorchSurv package offers a comprehensive set of metrics to evaluate the predictive
performance of survival models, including the AUC, C-index, and Brier score. The inputs of
the evaluation metrics functions are the subject-specific risk score estimated on the test set
and the survival response of the test set. The risk score measures the risk (or a proxy thereof)
that a subject has an event. We provide definitions for each metric and demonstrate their use
through illustrative code snippets.

AUC. The AUC measures the discriminatory capacity of the survival model at a given time 𝑡,
specifically the ability to reliably rank times-to-event based on estimated subject-specific risk
scores (Blanche et al., 2013; Heagerty & Zheng, 2005; Uno et al., 2007).

from torchsurv.metrics.auc import Auc

auc = Auc()

auc(log_hzs, event, time) # AUC at each time

auc(log_hzs, event, time, new_time=torch.tensor(10.)) # AUC at time 10

C-index. The C-index is a generalization of the AUC that represents the assessment of the
discriminatory capacity of the survival model across the entire time period (Harrell et al., 1996;
Uno et al., 2011).

from torchsurv.metrics.cindex import ConcordanceIndex

cindex = ConcordanceIndex()

cindex(log_hzs, event, time)

Monod et al. (2024). TorchSurv: A Lightweight Package for Deep Survival Analysis. Journal of Open Source Software, 9(104), 7341.
https://doi.org/10.21105/joss.07341.

3

https://doi.org/10.21105/joss.07341

Brier Score. The Brier score evaluates the accuracy of a model at a given time 𝑡 (Graf et al.,
1999). It represents the average squared distance between the observed survival status and the
predicted survival probability. The Brier score cannot be obtained for the Cox proportional
hazards model because the survival function is not estimated, but it can be obtained for the
Weibull AFT model.

from torchsurv.metrics.brier_score import BrierScore

surv = weibull.survival_function(log_params, time)

brier = Brier()

brier(surv, event, time) # Brier score at each time

brier.integral() # Integrated Brier score over time

Additional features. In TorchSurv, the evaluation metrics can be obtained for risk scores
that are time-dependent and time-independent (e.g., for proportional and non-proportional
hazards). Additionally, subjects can optionally be weighted (e.g., by the inverse probability
of censoring weighting (IPCW)). Lastly, functionalities including the confidence interval, a
one-sample hypothesis test to determine whether the metric is better than that of a random
predictor, and a two-sample hypothesis test to compare evaluation metrics obtained from two
different models are implemented. The following code snippet exemplifies the aforementioned
functionalities for the C-index.

cindex.confidence_interval() # CI, default alpha=.05

cindex.p_value(alternative='greater') # pvalue, H0:c=0.5, HA:c>0.5

cindex.compare(cindex_other) # pvalue, H0:c1=c2, HA:c1>c2

Conflicts of interest
MM, PK, DO and TC are employees and stockholders of Novartis, a global pharmaceutical
company.

References
Abeywardana, S. (2021). torchlife: Survival Analysis using PyTorch. https://doi.org/10.

32614/CRAN.package.survival

Blanche, P., Dartigues, J., & Jacqmin‐Gadda, H. (2013). Review and comparison of ROC curve
estimators for a time‐dependent outcome with marker‐dependent censoring. Biometrical
Journal, 55(5), 687–704. https://doi.org/10.1002/bimj.201200045

Breslow, N. E. (1975). Analysis of survival data under the proportional hazards model.
International Statistical Review / Revue Internationale de Statistique, 43(1), 45. https:
//doi.org/10.2307/1402659

Carroll, K. J. (2003). On the use and utility of the Weibull model in the analysis of survival
data. Controlled Clinical Trials, 24(6), 682–701. https://doi.org/10.1016/s0197-2456(03)
00072-2

Cox, D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society:
Series B (Methodological), 34(2), 187–202. https://doi.org/10.1007/978-1-4612-4380-9_
37

Davidson-Pilon, C. (2019). lifelines: survival analysis in Python. Journal of Open Source
Software, 4(40), 1317. https://doi.org/10.21105/joss.01317

Efron, B. (1977). The Efficiency of Cox’s Likelihood Function for Censored Data. Journal
of the American Statistical Association, 72(359), 557–565. https://doi.org/10.1080/
01621459.1977.10480613

Monod et al. (2024). TorchSurv: A Lightweight Package for Deep Survival Analysis. Journal of Open Source Software, 9(104), 7341.
https://doi.org/10.21105/joss.07341.

4

https://doi.org/10.32614/CRAN.package.survival
https://doi.org/10.32614/CRAN.package.survival
https://doi.org/10.1002/bimj.201200045
https://doi.org/10.2307/1402659
https://doi.org/10.2307/1402659
https://doi.org/10.1016/s0197-2456(03)00072-2
https://doi.org/10.1016/s0197-2456(03)00072-2
https://doi.org/10.1007/978-1-4612-4380-9_37
https://doi.org/10.1007/978-1-4612-4380-9_37
https://doi.org/10.21105/joss.01317
https://doi.org/10.1080/01621459.1977.10480613
https://doi.org/10.1080/01621459.1977.10480613
https://doi.org/10.21105/joss.07341

Graf, E., Schmoor, C., Sauerbrei, W., & Schumacher, M. (1999). Assessment and comparison
of prognostic classification schemes for survival data. Statistics in Medicine, 18(17–18),
2529–2545. https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18%3C2529::
aid-sim274%3E3.0.co;2-5

Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariate prognostic models: Is-
sues in developing models, evaluating assumptions and adequacy, and measuring and
reducing errors. Statistics in Medicine, 15(4), 361–387. https://doi.org/10.1002/(sici)
1097-0258(19960229)15:4%3C361::aid-sim168%3E3.0.co;2-4

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised
visual representation learning. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 9729–9738. https://doi.org/10.1109/cvpr42600.2020.00975

Heagerty, P. J., & Zheng, Y. (2005). Survival model predictive accuracy and ROC curves.
Biometrics, 61(1), 92–105. https://doi.org/10.1111/j.0006-341x.2005.030814.x

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., & Kluger, Y. (2018).
DeepSurv: personalized treatment recommender system using a Cox proportional hazards
deep neural network. BMC Medical Research Methodology, 18(1), 1–12. https://doi.org/
10.1186/s12874-018-0482-1

Kvamme, H., Borgan, Ørnulf, & Scheel, I. (2019). Time-to-Event Prediction with Neural
Networks and Cox Regression. Journal of Machine Learning Research, 20(129), 1–30.
http://jmlr.org/papers/v20/18-424.html

Nagpal, C., Potosnak, W., & Dubrawski, A. (2022). Auton-survival: An open-source package
for regression, counterfactual estimation, evaluation and phenotyping with censored time-
to-event data. Machine Learning for Healthcare Conference, 585–608. https://doi.org/10.
48550/arXiv.2204.07276

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. https://doi.org/10.48550/arXiv.
1912.01703

Pölsterl, S. (2020). Scikit-survival: A library for time-to-event analysis built on top of scikit-
learn. The Journal of Machine Learning Research, 21(1), 8747–8752. https://doi.org/10.
5281/zenodo.3352342

Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B., & Wei, L. J. (2011). On the C‐statistics
for evaluating overall adequacy of risk prediction procedures with censored survival data.
Statistics in Medicine, 30(10), 1105–1117. https://doi.org/10.1002/sim.4154

Uno, H., Cai, T., Tian, L., & Wei, L. J. (2007). Evaluating Prediction Rules for t-Year
Survivors With Censored Regression Models. Journal of the American Statistical Association,
102(478), 527–537. https://doi.org/10.1198/016214507000000149

Monod et al. (2024). TorchSurv: A Lightweight Package for Deep Survival Analysis. Journal of Open Source Software, 9(104), 7341.
https://doi.org/10.21105/joss.07341.

5

https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18%3C2529::aid-sim274%3E3.0.co;2-5
https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18%3C2529::aid-sim274%3E3.0.co;2-5
https://doi.org/10.1002/(sici)1097-0258(19960229)15:4%3C361::aid-sim168%3E3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0258(19960229)15:4%3C361::aid-sim168%3E3.0.co;2-4
https://doi.org/10.1109/cvpr42600.2020.00975
https://doi.org/10.1111/j.0006-341x.2005.030814.x
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
http://jmlr.org/papers/v20/18-424.html
https://doi.org/10.48550/arXiv.2204.07276
https://doi.org/10.48550/arXiv.2204.07276
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.5281/zenodo.3352342
https://doi.org/10.5281/zenodo.3352342
https://doi.org/10.1002/sim.4154
https://doi.org/10.1198/016214507000000149
https://doi.org/10.21105/joss.07341

	Summary
	Statement of need
	Functionality
	Loss functions
	Evaluation Metrics Functions

	Conflicts of interest
	References

