
pycellga: A Python package for improved cellular
genetic algorithms
Sevgi Akten Karakaya 1 and Mehmet Hakan Satman 2

1 Department of Informatics, Istanbul University, Istanbul, Turkey 2 Department of Econometrics,
Istanbul University, Istanbul, Turkey

DOI: 10.21105/joss.07322

Software
• Review
• Repository
• Archive

Editor: Josh Borrow
Reviewers:

• @jmejia8
• @jbussemaker

Submitted: 14 August 2024
Published: 03 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
pycellga is a Python package that implements cellular genetic algorithms (CGAs) for optimizing
complex problems. CGAs combine the principles of cellular automata and traditional genetic
algorithms, utilizing a spatially structured population organized in a grid-like topology. This
structure allows each individual to interact only with its neighboring individuals, promoting
diversity and maintaining a balance between exploration and exploitation during the optimization
process.

While CGAs themselves are not a novel contribution of this work, pycellga significantly
enhances their applicability by integrating advanced features and providing unparalleled versa-
tility. The package supports binary, real-valued, and permutation-based optimization problems,
making it adaptable to a wide variety of problem domains. Its use of machine-coded operators
for real-valued optimization, adhering to IEEE 754 floating-point arithmetic standards, ensures
high precision and computational efficiency. Moreover, pycellga is designed to be extensible,
enabling users to easily customize selection, crossover, and mutation operators to suit specific
problem requirements.

The package is designed to be user-friendly, with a straightforward installation process and
comprehensive documentation. Researchers and practitioners in fields such as operations
research, artificial intelligence, and machine learning can leverage pycellga to tackle complex
optimization challenges effectively. By integrating the principles of cellular automata with
genetic algorithms, pycellga represents a significant advancement in the field of evolutionary
computation, offering increased flexibility and adaptability compared to traditional methods.

Additionally, pycellga includes machine-coded operators with byte implementations, developed
by Satman (2013). It features Alpha-male CGA, Machine-Coded Compact CGA, and Improved
CGA with Machine-Coded Operators for real-valued optimization problems (Karakaya &
Satman, 2024).

Introduction
Optimization problems are a fundamental aspect of various scientific and engineering fields,
involving the search for the best solution among a large set of possible options. Genetic
algorithms (GAs) have been widely used to address these problems due to their robustness
and adaptability. Inspired by the process of natural selection, GAs operate on a population of
potential solutions, applying operators such as selection, crossover, and mutation to evolve
the population toward better solutions over successive generations (Goldberg, 1989; Holland,
1975).

Despite their effectiveness, traditional GAs face challenges, particularly in maintaining diversity
within the population and avoiding premature convergence to suboptimal solutions (Goldberg

Karakaya, & Satman. (2025). pycellga: A Python package for improved cellular genetic algorithms. Journal of Open Source Software, 10(105),
7322. https://doi.org/10.21105/joss.07322.

1

https://orcid.org/0000-0001-9346-5795
https://orcid.org/0000-0002-9402-1982
https://doi.org/10.21105/joss.07322
https://github.com/openjournals/joss-reviews/issues/7322
https://github.com/SevgiAkten/pycellga
https://doi.org/10.5281/zenodo.14539107
joshborrow.com
https://orcid.org/0000-0002-1327-1921
https://github.com/jmejia8
https://github.com/jbussemaker
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07322

& Deb, 1991). To mitigate these issues, researchers have developed CGAs, which introduce
a spatial structure to the population (Manderick & Spiessens, 1991; Whitley, 1993). In a
CGA, individuals are placed on a grid, and interactions are restricted to neighboring individuals.
This localized interaction promotes diversity and enables a more thorough exploration of the
solution space.

pycellga is a Python package designed to efficiently implement CGAs. By integrating the
principles of cellular automata with genetic algorithms, pycellga offers a robust framework
for tackling complex optimization problems. The pycellga package is designed to handle a
wide range of optimization problems, including binary, real-valued, and permutation-based
challenges, making it a versatile tool for diverse applications in evolutionary computation. The
package includes several built-in functions for initialization, selection, crossover, mutation, and
evaluation, as well as customization options to cater to different needs. This flexibility allows
researchers and practitioners to apply CGAs to a wide range of problems with ease (Karakaya
& Satman, 2024).

By providing a comprehensive toolkit for CGAs, pycellga aims to advance the field of
evolutionary computation and equip researchers with the tools needed to solve increasingly
complex optimization problems effectively. The integration of cellular automata with genetic
algorithms in pycellga represents a significant advancement, offering greater flexibility and
adaptability compared to traditional methods (Eiben & Smith, 2015; Karakaya & Satman,
2024; Michalewicz, 1996).

The pycellga package includes machine-coded operators with byte-level implementations,
developed by Satman (2013). In the context of genetic algorithms, “machine-coded” refers to
a specialized encoding technique optimized for real-parameter optimization. This approach
differs from standard coding practices by emphasizing efficient data processing through byte-
level manipulation. Originally introduced by Satman (2013), this technique is particularly
advantageous for real-valued optimization tasks, as it allows direct manipulation of byte-
representations to enhance computational performance. Encoding and decoding of numerical
values conform to the IEEE 754 standard for floating-point arithmetic, further improving
precision and effectiveness in optimizing continuous functions. By using machine-coded
operators, pycellga leverages this efficiency to handle complex optimization challenges more
effectively.

In addition, the pycellga package features Alpha-male CGA, developed based on insights
from Satman & Akadal (2019); Machine-Coded Compact CGA, inspired by Satman & Akadal
(2020); and Improved CGA with Machine-Coded Operators (Karakaya & Satman, 2024).
The improved cellular genetic algorithm utilizes machine-coded operators specifically tailored
for real-valued optimization problems. This method is particularly distinctive for its use of
byte-based operators, which are designed to process numerical data efficiently in terms of
memory usage.

State of the field
There are several existing software packages that implement genetic algorithms, such as DEAP
and PyGAD. These libraries provide a wide range of tools for evolutionary computation and
are highly flexible for various optimization tasks. However, most of these packages do not
specifically focus on the integration of cellular automata with genetic algorithms, except for
JCell, which is a Java implementation of CGAs (Alba & Dorronsoro, 2008).

The lack of CGA variants in widely used Python libraries may be attributed to the complexity
and niche appeal of cellular genetic algorithms. CGAs, by design, require a spatially structured
population and localized interactions, which add an extra layer of complexity compared
to traditional GAs. Additionally, while traditional GAs are well-documented and widely
adopted, CGAs have been primarily explored in academic research, with fewer applications in

Karakaya, & Satman. (2025). pycellga: A Python package for improved cellular genetic algorithms. Journal of Open Source Software, 10(105),
7322. https://doi.org/10.21105/joss.07322.

2

https://doi.org/10.21105/joss.07322

mainstream problem-solving scenarios. This may have led to limited adoption in general-purpose
optimization libraries.

pycellga addresses this gap by offering a specialized toolkit for CGAs, leveraging the strengths
of both cellular automata and genetic algorithms. By incorporating features such as Alpha-male
CGA, Machine-Coded Compact CGA, and Improved CGA with Machine-Coded Operators,
pycellga provides unparalleled support for tackling complex optimization problems. Its use of
machine-coded operators, adhering to IEEE 754 floating-point arithmetic standards, ensures
high precision and computational efficiency, making it a significant advancement in the field.

The introduction of pycellga represents a deliberate effort to bring CGA variants into broader
usage, making these powerful algorithms more accessible to researchers and practitioners.
By providing a Python-based implementation, pycellga bridges the gap between theoretical
advancements in CGA research and their practical applications, thus addressing the limitations
in existing software ecosystems.

Statement of need
The need for advanced optimization frameworks like pycellga arises from the growing complex-
ity of real-world problems, which often involve high-dimensional search spaces, mixed-variable
types, and intricate constraints. Traditional GAs, while highly versatile and widely adopted, face
several limitations in addressing these challenges. These include a tendency toward premature
convergence, difficulty in maintaining population diversity, and an inability to balance global
exploration with local exploitation effectively (Goldberg, 1989; Holland, 1975).

CGAs offer a compelling solution by introducing a spatially structured population. In CGAs,
individuals are arranged in a grid-like topology and interact only with their neighbors. This
localized interaction not only enhances population diversity but also mitigates the risk of
premature convergence, a common issue in traditional GAs (Manderick & Spiessens, 1991;
Whitley, 1993). By promoting a gradual spread of genetic material through localized selection
and crossover, CGAs achieve a more thorough exploration of the solution space, particularly in
high-dimensional and multi-modal optimization problems (Alba & Dorronsoro, 2008). These
attributes make CGAs especially effective for tackling complex challenges in scheduling, resource
allocation, and multi-objective optimization (Carlos A. Coello Coello & Veldhuizen, 2007).

Despite the clear advantages of CGAs, their implementation in existing tools remains limited.
Frameworks such as JCell, while functional, lack the flexibility, extensibility, and user-friendly
features offered by modern programming environments like Python (Alba & Dorronsoro,
2008). To address this gap, pycellga provides a Python-based framework that combines the
strengths of CGAs with the convenience and power of Python’s ecosystem. The package
includes efficient byte-level implementations of machine-coded operators, as introduced by
Satman (2013), which significantly enhance performance for real-valued optimization problems.
Additionally, it incorporates advanced CGA variants, such as Alpha-male CGA (Satman &
Akadal, 2019), Machine-Coded Compact CGA (Satman & Akadal, 2020), and an Improved
CGA with Machine-Coded Operators (Karakaya & Satman, 2024).

The unique contributions of pycellga extend beyond its robust implementation of CGAs. By
supporting binary, real-valued, and permutation-based optimization problems, the package offers
unparalleled versatility. Its use of machine-coded operators for real-valued optimization, adhering
to IEEE 754 floating-point arithmetic standards, ensures high precision and computational
efficiency. Moreover, pycellga is designed to be extensible, enabling users to easily customize
selection, crossover, and mutation operators to suit specific problem domains.

In a field where traditional GAs have seen extensive research to address their inherent limita-
tions (Eiben & Smith, 2015), CGAs provide a novel and effective approach to further these
advancements. pycellga stands out as a modern, accessible, and feature-rich toolkit that

Karakaya, & Satman. (2025). pycellga: A Python package for improved cellular genetic algorithms. Journal of Open Source Software, 10(105),
7322. https://doi.org/10.21105/joss.07322.

3

https://doi.org/10.21105/joss.07322

equips researchers and practitioners to tackle increasingly complex optimization challenges
with confidence.

Installation and basic usage
pycellga can be downloaded and installed by using the following command:

pip install pycellga

Usage Examples
In this section, we’ll explain the CGA method in the optimizer and provide an example of how
to use it. The package includes various ready-to-use crossover and mutation operators, along
with real-valued, binary, and permutation functions that you can run directly. Examples for
other methods are available in the example folder, while an example for the CGA is provided
below.

CGA

CGA is a type of genetic algorithm where the population is structured as a grid (or other
topologies), and each individual interacts only with its neighbors. This structure helps maintain
diversity in the population and can prevent premature convergence. To specialize the CGA for
real-valued optimization problems, ICGA (Improved CGA) with machine-coded representation
can be used, applying byte operators. The encoding and decoding of numbers follow the IEEE
754 standard for floating-point arithmetic, yielding better results for continuous functions.

Example Problem
Suppose we have a problem that we want to minimize using the CGA. The problem is defined
as a simple sum of squares function, where the goal is to find a chromosome (vector) that
minimizes the function.

The sum of squares function computes the sum of the squares of each element in the
chromosome. This function reaches its global minimum when all elements of the chromosome
are equal to 0. The corresponding function value at this point is 0.

ExampleProblem Class

Here’s how we can define this problem in Python using the ExampleProblem class:

from mpmath import power as pw

from typing import List

from pycellga.optimizer import cga

from pycellga.recombination.byte_one_point_crossover import ByteOnePointCrossover

from pycellga.mutation.byte_mutation_random import ByteMutationRandom

from pycellga.selection.tournament_selection import TournamentSelection

from pycellga.problems.abstract_problem import AbstractProblem

from pycellga.common import GeneType

class ExampleProblem(AbstractProblem):

def __init__(self, n_var):

super().__init__(

gen_type=GeneType.REAL,

Karakaya, & Satman. (2025). pycellga: A Python package for improved cellular genetic algorithms. Journal of Open Source Software, 10(105),
7322. https://doi.org/10.21105/joss.07322.

4

https://doi.org/10.21105/joss.07322

n_var=n_var,

xl=-100,

xu=100

)

def f(self, x: List[float]) -> float:

return round(sum(pw(xi, 2) for xi in x),3)

Usage:

result = cga(

n_cols=5,

n_rows=5,

n_gen=100,

ch_size=5,

p_crossover=0.9,

p_mutation=0.2,

problem=ExampleProblem(n_var=5),

selection=TournamentSelection,

recombination=ByteOnePointCrossover,

mutation=ByteMutationRandom,

seed_par=100

)

Print the results

print("Best solution chromosome:", result.chromosome)

print("Best fitness value:", result.fitness_value)

Expected Output:

Best solution chromosome: [0.0, 0.0, 0.0, 0.0, 0.0]

Best fitness value: 0.0

References
Alba, E., & Dorronsoro, B. (2008). Cellular genetic algorithms. Springer. https://doi.org/10.

1007/978-0-387-77610-1_1

Carlos A. Coello Coello, Gary B. Lamont, & Veldhuizen, D. A. V. (2007). Evolutionary
algorithms for solving multi-objective problems (2nd ed.). Springer. https://doi.org/10.
1007/978-0-387-36797-2

Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing. Springer.
https://doi.org/10.1007/978-3-662-44874-8

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley. https://doi.org/10.5860/choice.27-0936

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in
genetic algorithms. Foundations of Genetic Algorithms, 1, 69–93. https://doi.org/10.
1016/b978-0-08-050684-5.50008-2

Holland, J. H. (1975). Adaptation in natural and artificial systems. MIT Press.
ISBN: 9780262581110

Karakaya, S. A., & Satman, M. H. (2024). An improved cellular genetic algorithm with
machine-coded operators for real-valued optimisation problems. Journal of Engineering
Research and Applied Science, 13(1), 2500–2514.

Manderick, B., & Spiessens, P. (1991). The genetic algorithm and the structure of the fitness

Karakaya, & Satman. (2025). pycellga: A Python package for improved cellular genetic algorithms. Journal of Open Source Software, 10(105),
7322. https://doi.org/10.21105/joss.07322.

5

https://doi.org/10.1007/978-0-387-77610-1_1
https://doi.org/10.1007/978-0-387-77610-1_1
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.5860/choice.27-0936
https://doi.org/10.1016/b978-0-08-050684-5.50008-2
https://doi.org/10.1016/b978-0-08-050684-5.50008-2
https://doi.org/10.21105/joss.07322

landscape. In R. K. Belew & L. B. Booker (Eds.), Proceedings of the 4th international
conference on genetic algorithms (ICGA) (pp. 143–150). Morgan Kaufmann.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs (3rd ed.).
Springer. https://doi.org/10.1007/978-3-662-03315-9

Satman, M. H. (2013). Machine coded genetic algorithms for real parameter optimization
problems. Gazi University Journal of Science, 26(1), 85–95.

Satman, M. H., & Akadal, E. (2019). Performance comparison of the specialized alpha male
genetic algorithm with some evolutionary algorithms. Trakya University Journal of Social
Science, 21(1), 55–82. https://doi.org/10.26468/trakyasobed.452095

Satman, M. H., & Akadal, E. (2020). Machine coded compact genetic algorithms for real
parameter optimization problems. Alphanumeric Journal, 8(1), 43–58. https://doi.org/10.
17093/alphanumeric.576919

Whitley, D. (1993). Cellular genetic algorithms. In S. Forrest (Ed.), Proceedings of the 5th
international conference on genetic algorithms (ICGA) (p. 658). Morgan Kaufmann.

Karakaya, & Satman. (2025). pycellga: A Python package for improved cellular genetic algorithms. Journal of Open Source Software, 10(105),
7322. https://doi.org/10.21105/joss.07322.

6

https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.26468/trakyasobed.452095
https://doi.org/10.17093/alphanumeric.576919
https://doi.org/10.17093/alphanumeric.576919
https://doi.org/10.21105/joss.07322

	Summary
	Introduction
	State of the field
	Statement of need
	Installation and basic usage
	Usage Examples
	CGA

	Example Problem
	ExampleProblem Class

	References

