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Summary

A major bottleneck of chromatography-based analytics has been the elusive fully automated
identification and integration of peak data without the need of extensive human supervision.
The presented Python package PeakPerformance applies Bayesian inference to chromatographic
peak fitting, and provides an automated approach featuring model selection and uncertainty
quantification. Regarding peak acceptance, it improves on vendor software solutions with more
sophisticated, multi-layered metrics for decision making based on convergence of the parameter
estimation as well as the uncertainties of peak parameters. Currently, its application is focused
on data from targeted liquid chromatography tandem mass spectrometry (LC-MS/MS), but
its design allows for an expansion to other chromatographic techniques and accommodates
users with little programming experience by supplying convenience functions and relying on
Microsoft Excel for data input and reporting. PeakPerformance is implemented in Python,
its source code is available on GitHub, and a thorough documentation is available under
https://peak-performance.rtfd.io. It is unit-tested on Linux and Windows and accompanied by
example notebooks.

Statement of need

In biotechnological research and industrial applications, chromatographic techniques are ubig-
uitously used to analyze samples from fermentations, e.g. to determine the concentration
of substrates and products. Over the course of a regular lab-scale bioreactor fermentation,
hundreds of samples and subsequently thousands of chromatographic peaks may accrue. This
is exacerbated by the spread of microbioreactors causing a further increase in the amount of
samples per time (Hemmerich et al., 2018; Kostov et al., 2001). While the recognition and
integration of peaks by vendor software is — in theory — automated, it typically requires visual
inspection and occasional manual re-integration by the user due to a large number of false
positives, false negatives or incorrectly determined baselines, ultimately downgrading it to a
semi-automated process. Since this is a time-consuming, not to mention tedious, procedure and
introduces the problem of comparability between purely manual and algorithm-based integration
as well as user-specific differences, we instead propose a peak fitting solution based on Bayesian
inference. The advantage of this approach is the complete integration of all relevant parameters
— i.e. baseline, peak area and height, mean, signal-to-noise ratio etc. — into one single model
through which all parameters are estimated simultaneously. Furthermore, Bayesian inference
comes with uncertainty quantification for all peak model parameters, and thus does not merely
yield a point estimate as would commonly be the case. It also grants access to novel metrics
for avoiding false positives and negatives by rejecting signals where a) a convergence criterion
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of the peak fitting procedure was not fulfilled or b) the uncertainty of the estimated parameters
exceeded a user-defined threshold. By employing peak fitting to uncover peak parameters —
most importantly the area — this approach thus differs from recent applications of Bayesian
statistics to chromatographic peak data which e.g. focused on peak detection (Vivé-Truyols,
2012; Woldegebriel & Vivé-Truyols, 2015), method optimization (Wiczling & Kaliszan, 2016)
and simulations of chromatography (Briskot et al., 2019; Yamamoto et al., 2021). The first
studies to be published about this topic contain perhaps the technique most similar in spirit to
the present one since functions made of an idealized peak shape and a noise term are fitted but
beyond this common starting point the methodology is quite distinct (Kelly & Harris, 1971b,
1971a).

Materials and Methods

Implementation

PeakPerformance is an open source Python package compatible with Windows and Linux/Unix
platforms. At the time of manuscript submission, it features three modules: pipeline, models,
and plotting. Due to its modular design, PeakPerformance can easily be expanded by adding
e.g. additional models for deviating peak shapes or different plots. Currently, the featured
peak models describe peaks in the shape of normal or skew normal distributions, as well as
double peaks of normal or skewed normal shape. The normal distribution is regarded as the
ideal peak shape and common phenomena like tailing and fronting can be expressed by the
skew normal distribution (Azzalini, 1985). Bayesian inference is conducted utilizing the PyMC
package (Abril-Pla et al., 2023) with the external sampler nutpie for improved performance
(Seyboldt & PyMC Developers, 2022). Both model selection and analysis of inference data
objects are realized with the ArviZ package (Kumar et al., 2019). Since the inference data is
stored alongside graphs and report sheets, users may employ the ArviZ package or others for
further analysis of the results if necessary.

Results and Discussion

PeakPerformance workflow

PeakPerformance accommodates the use of a pre-manufactured data pipeline for standard
applications (Fig. 1) as well as the creation of custom data pipelines using only its core
functions. The provided data analysis pipeline was designed in a user-friendly way and is
covered by multiple example notebooks.

Before using PeakPerformance, the user has to supply raw data files containing a NumPy array
with time in the first and intensity in the second dimension for each peak as described in detail
in the documentation. Using the prepare_model_selection() method, an Excel template
file (“Template.xIsx”) for inputting user information is prepared and stored in the raw data
directory.

Since targeted LC-MS/MS analyses essentially cycle through a list of mass traces for every
sample, a model type has to be assigned to each mass trace. If this is not done by the user,
an optional automated model selection step will be performed, where one exemplary peak
per mass trace is analyzed with all models to identify the most appropriate one. Its results
for each model are ranked based on Pareto-smoothed importance sampling leave-one-out
cross-validation (LOO-PIT) (Vehtari et al., 2016; Watanabe, 2010).
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Figure 1: Overview of the pre-manufactured data analysis pipeline featured in
PeakPerformance.

Subsequently, the peak analysis pipeline can be started with the function pipeline() from the
pipeline module. Depending on whether the “pre-filtering” option was selected, an optional
filtering step will be executed to reject signals where clearly no peak is present before sampling,
thus saving computation time. Upon passing the first filter, a Markov chain Monte Carlo
(MCMC) simulation is conducted using a No-U-Turn Sampler (NUTS) (Hoffmann & Gelman,
2014), preferably - if installed in the Python environment - the nutpie sampler (Seyboldt &
PyMC Developers, 2022) due to its highly increased performance compared to the default
sampler of PyMC. When a posterior distribution has been obtained, the main filtering step is
next in line checking the convergence of the Markov chains via the potential scale reduction
factor (Gelman & Rubin, 1992) or R statistic and based on the uncertainty of the determined
peak parameters. If a signal was accepted as a peak, a posterior predictive check is conducted
and added to the inference data object resulting from the model simulation. Regarding the
performance of the simulation, in our tests an analysis of a single peak took 20 s to 30 s and of
a double peak 25 s to 90 s. This is of course dependent on the type of sampler, the power of
the computer as well as whether an additional simulation with an increased number of samples
needs to be conducted.

Peak fitting results and diagnostic plots

The most complete report created after completing a cycle of the data pipeline is found in an
Excel file called “peak_data_summary.xlsx”. Here, each analyzed time series has multiple rows
(one per peak parameter) with the columns containing estimation results in the form of mean
and standard deviation (sd) of the marginal posterior distribution, highest density interval
(HDI), and the R statistic among other metrics. The second Excel file created is denominated
as “area_summary.xIsx” and is a more handy version of “peak_data_summary.xlsx" with
a reduced degree of detail since subsequent data analyses will most likely rely on the peak
area. The most valuable result, however, are the inference data objects saved to disk for
each signal for which a peak function was successfully fitted. Conveniently, the inference data
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objects saved as *.nc files contain all data and metadata related to the Bayesian parameter
estimation, enabling the user to perform diagnostics or create custom visualizations not already
provided by PeakPerformance. Regarding data visualization with the matplotlib package
(Hunter, 2007; The Matplotlib Development Team, 2024), PeakPerformance's plots module
offers the generation of two diagram types for each successfully fitted peak. The posterior
plot presents the fit of the intensity function alongside the raw data points. The first row of
Figure 2 presents two such examples where the single peak diagram shows the histidine (His)
fragment with a m/z ratio of 110 Da and the double peak diagram the leucine (Leu) and
isoleucine (lle) fragments with a m/z ratio of 86 Da.
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Figure 2: Results plots for a single His peak and a double Leu and lle peak depicting the peak
fit (first row) and the posterior predictive checks (second row) alongside the raw data. The
numerical results are listed in Table 2.

The posterior predictive plots in the second row of Figure 4 are provided for visual posterior
predictive checks, namely the comparison of observed and predicted data distribution. Since
a posterior predictive check is based on drawing samples from the likelihood function, the
result represents the theoretical range of values encompassed by the model. Accordingly, this
plot enables users to judge whether the selected model can accurately explain the data. To
complete the example, Table 2 shows the results of the fit in the form of mean, standard
deviation, and HDI of each parameter’s marginal posterior.
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Table 2: Depiction of the results for the most important peak parameters of a single peak fit
with the skew normal model and a double peak fit with the double normal model. Mean, area,
and height have been highlighted in bold print as they constitute the most relevant parameters
for further data evaluation purposes. The results correspond to the fits exhibited in Figure 2.

arameter single skew normal model double normal model
P mean sd hdi_3% hdi_97% mean sd hdi_3% hdi_97%
intercept -43.94 7.41 -57.88 -30.02| 1115.40 38.69 1040.14 1185.07
slope 6.66 0.51 5.71 7.63] -21.65 3.09 -27.50 -15.94
noise 103.63 7.51 89.50 117.26f 118.63 8.01 103.52 133.29
11.73 0.02 11.70 11.76
mean 25.95 0.01 25.93 25.97 12.43  0.01 12.42 12.45
317.16 28.84 263.23 370.56
area 1512.32 37.31 1441.25 1581.37 674.34 26.34 623.47 722.88
. 774.99 65.28 653.50 897.88
height 1879.72 37.71 1809.3@ 1950.64 1762.66 64.04 1639.62 1881.66
0.16 0.02 0.13 0.20
std 0.53 0.02 0.48 0.56 0.15 0.01 0.14 0.17
6.56 0.72 5.22 7.88
sn 18.24 1.37 15.69 20.76 14.93 1.14 12.82 17.14
alpha 2.96 0.39 2.27 3.71 - - - -

In this case, the fits were successful and convergence was reached for all parameters. Most
notably and for the first time, the measurement noise was taken into account when determining
the peak area as represented by its standard deviation and as can be observed in the posterior
predictive plots where the noisy data points fall within the boundary of the 95 % HDI. In
the documentation, there is a study featuring simulated and experimental data to validate
PeakPerformance's results against a commercially available vendor software for peak integration
showing that comparable results are indeed obtained.
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