
Pooltool: A Python package for realistic billiards
simulation
Evan Kiefl 1

1 Independent Researcher, Canada
DOI: 10.21105/joss.07301

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @danielskatz

Submitted: 22 September 2024
Published: 28 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Billiards, a broad classification for games like pool and snooker, supports a robust, multidisci-
plinary research and engineering community that investigates topics in physics, game theory,
computer vision, robotics, and cue sports analytics. Central to these pursuits is the need for
accurate simulation.

Pooltool is a general-purpose billiards simulator crafted specifically for science and engineering.
Its core design principles focus on speed, ease of visualization, and fine-grained analysis.
It features customizable physics, an interactive 3D interface, a robust API, and extensive
documentation, enabling users to easily simulate, visualize, and analyze billiards shots for
generic research and engineering applications. Bolstered by a growing community and active
development, pooltool aims to be a systemic tool for billiards-related research.

Statement of need
Billiards simulation serves as the foundation for a wide array of research topics that collectively
encompass billiards-related studies. Specifically, the application of game theory to develop
AI billiards players has led to simulations becoming critical environments for the training of
autonomous agents (Archibald et al., 2010, 2016; Chen & Li, 2019; Fragkiadaki et al., 2015;
Silva & Prada, 2018; Smith, 2007; Tung et al., 2019). Meanwhile, billiards-playing robot
research, which relies on simulations to predict the outcome of potential actions, has progressed
significantly in the last 30 years and serves as a benchmark for broader advancements within
sports robotics (Alian et al., 2004; Bhagat, 2018; Greenspan et al., 2008; Mathavan et al.,
2016; Nierhoff et al., 2012; Sang, 1994). Billiards simulations also enrich computer vision (CV)
capabilities, facilitating precise ball trajectory tracking and enhancing shot reconstruction for
player analysis and training (for a review, see Rodriguez-Lozano et al. (2023)). Additionally,
through augmented reality (AR) and broadcast overlays, simulations have the potential to
extend their impact by offering shot prediction and strategy formulation in contexts such as
personal training apps and TV broadcasting, creating a more immersive understanding of the
game.

Unfortunately, the current billiards simulation software landscape reveals a stark contrast
between the realistic physics seen in some commercially-produced games (i.e., Shooterspool
and VirtualPool4) and the limited functionality of open-source projects. Commercial products
have little, if any, utility in research contexts due to closed source code and a lack of open APIs.
Conversely, available open source tools lack realism, usability, and adaptability for generic
research needs. The most widely cited simulator in research studies, FastFiz1, is unpackaged,
unmaintained, provides no modularity for custom geometries or for physical models, offers
restrictive 2D visualizations, outputs minimal simulation results with no built-in capabilities

1https://github.com/ekiefl/FastFiz

Kiefl. (2024). Pooltool: A Python package for realistic billiards simulation. Journal of Open Source Software, 9(101), 7301. https://doi.org/10.
21105/joss.07301.

1

https://orcid.org/0000-0002-6473-0921
https://doi.org/10.21105/joss.07301
https://github.com/openjournals/joss-reviews/issues/7301
https://github.com/ekiefl/pooltool
https://doi.org/10.5281/zenodo.13824503
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/danielskatz
https://creativecommons.org/licenses/by/4.0/
https://github.com/ekiefl/FastFiz
https://doi.org/10.21105/joss.07301
https://doi.org/10.21105/joss.07301


for introspection, and was custom built for hosting the Association for the Advancement of
Artificial Intelligence (AAAI) Computational Pool Tournament from 2005-2008 (Archibald et
al., 2010). Another option, Billiards2, offers a visually appealing 3D game experience, realistic
physics, and supports customization via Lua scripting. However, as a standalone application,
it lacks interoperability with commonly used systems and tools in research. Written in Lua,
an uncommon language in the scientific community, it has limited appeal in research settings.
The lack of Windows support is another drawback. FooBilliard++3 is a 3D game with realistic
physics, yet is not a general-purpose billiards simulator, instead focusing on game experience
and aesthetics. Other offerings suffer from drawbacks already mentioned.

The lack of suitable software for billiards simulation in research contexts forces researchers to
develop case-specific simulators that meet their research requirements but fall short of serving
the broader community as general-purpose simulators. This fragments the research collective,
renders cross-study results difficult or impossible to compare, and leads to wasted effort spent
reinventing the wheel. Pooltool fills this niche by providing a billiards simulation platform
designed with speed, flexibility, and extensibility in mind.

Implementation
Pooltool is implemented as a Python package, and thus can be utilized within Python scripts,
Jupyter notebooks, other Python packages, or any environment that supports Python.

Pooltool employs an event-based simulation algorithm that significantly increases computational
efficiency compared to traditional methods that rely on small, discrete time steps (Leckie &
Greenspan, 2006). By utilizing analytical formulations of the equations of motion in billiards,
pooltool advances the system state directly to the next significant event—such as a collision
or a change in a ball’s motion—by precisely calculating when these events occur. To further
increase efficiency, all computationally intensive portions of the shot evolution algorithm are
accelerated with just-in-time (JIT) compilation using Numba (Lam et al., 2024), which compiles
Python code to machine code at runtime.

Pooltool includes an interactive 3D interface written with the Python game engine, Panda3D 4.
The interface is a central feature of pooltool and can be launched either from the command line
or directly through the Python API. It offers a controllable camera for visualizing shot trajectories
in a realistic 3D environment, along with a comprehensive set of playback controls—including
options to pause, slow down, rewind, and fast-forward shots. Beyond visualization, users can
also interactively simulate shots in real time, utilizing game-like controls to stroke the cue stick
via keyboard and mouse inputs. Additionally, shots can be programmatically generated and
visualized, making it a flexible tool for both interactive play and scripted simulations.

2https://www.nongnu.org/billiards/
3https://foobillardplus.sourceforge.net/
4https://www.panda3d.org/

Kiefl. (2024). Pooltool: A Python package for realistic billiards simulation. Journal of Open Source Software, 9(101), 7301. https://doi.org/10.
21105/joss.07301.

2

https://www.nongnu.org/billiards/
https://foobillardplus.sourceforge.net/
https://www.panda3d.org/
https://doi.org/10.21105/joss.07301
https://doi.org/10.21105/joss.07301


Figure 1: Screenshots from the interactive interface.

Usage
Pooltool’s API enables precise control over billiard system construction, simulation, and
analysis. Up-to-date tutorials and examples can be found in the official documentation:
pooltool.readthedocs.io.

References
Alian, M. E., Shouraki, S. B., Shalmani, M., Karimian, P., & Sabzmeydani, P. (2004).

Roboshark: A gantry pool player robot. Thirty-Fifth International Symposium on Robotics
(ISR 2004), Paris.

Archibald, C., Altman, A., Greenspan, M., & Shoham, Y. (2010). Computational pool: A new
challenge for game theory pragmatics. AI Mag., 31(4), 33–41. https://doi.org/10.1609/
aimag.v31i4.2312

Archibald, C., Altman, A., & Shoham, Y. (2016). A distributed agent for computational pool.
IEEE Trans. Comput. Intell. AI Games, 8(2), 190–202. https://doi.org/10.1109/tciaig.
2016.2549748

Bhagat, K. H. (2018). Automatic snooker-playing robot with speech recognition using deep
learning [Master’s thesis]. California State University, Long Beach.

Chen, Y., & Li, Y. (2019). Macro and micro reinforcement learning for playing nine-ball pool.
2019 IEEE Conference on Games (CoG), 1–4. https://doi.org/10.1109/cig.2019.8848113

Fragkiadaki, K., Agrawal, P., Levine, S., & Malik, J. (2015). Learning visual predictive models
of physics for playing billiards. https://doi.org/10.48550/arxiv.1511.07404

Greenspan, M., Lam, J., Godard, M., Zaidi, I., Jordan, S., Leckie, W., Anderson, K., &
Dupuis, D. (2008). Toward a competitive pool-playing robot. Computer, 41(1), 46–53.
https://doi.org/10.1109/mc.2008.33

Lam, S. K., stuartarchibald, Pitrou, A., Florisson, M., Markall, G., Seibert, S., Self-Construct,

Kiefl. (2024). Pooltool: A Python package for realistic billiards simulation. Journal of Open Source Software, 9(101), 7301. https://doi.org/10.
21105/joss.07301.

3

https://pooltool.readthedocs.io/en/latest/
https://doi.org/10.1609/aimag.v31i4.2312
https://doi.org/10.1609/aimag.v31i4.2312
https://doi.org/10.1109/tciaig.2016.2549748
https://doi.org/10.1109/tciaig.2016.2549748
https://doi.org/10.1109/cig.2019.8848113
https://doi.org/10.48550/arxiv.1511.07404
https://doi.org/10.1109/mc.2008.33
https://doi.org/10.21105/joss.07301
https://doi.org/10.21105/joss.07301


E., Anderson, T. A., Leobas, G., rjenc29, Collison, M., luk-f-a, Kaustubh, Bourque,
J., Meurer, A., Oliphant, T. E., Riasanovsky, N., Wang, M., densmirn, … MattyG.
(2024). Numba/numba: 0.60.0 (Version 0.60.0). Zenodo. https://doi.org/10.5281/
zenodo.11642058

Leckie, W., & Greenspan, M. (2006). An event-based pool physics simulator. Advances in
Computer Games, 247–262. https://doi.org/10.1007/11922155_19

Mathavan, S., Jackson, M. R., & Parkin, R. M. (2016). Ball positioning in robotic billiards:
A nonprehensile manipulation-based solution. IEEE/ASME Trans. Mechatron., 21(1),
184–195. https://doi.org/10.1109/tmech.2015.2461547

Nierhoff, T., Heunisch, K., & Hirche, S. (2012, May). Strategic play for a pool-playing
robot. 2012 IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO).
https://doi.org/10.1109/arso.2012.6213402

Rodriguez-Lozano, F. J., Gámez-Granados, J. C., Martıńez, H., Palomares, J. M., & Oli-
vares, J. (2023). 3D reconstruction system and multiobject local tracking algorithm
designed for billiards. Applied Intelligence, 53(19), 21543–21575. https://doi.org/10.1007/
s10489-023-04542-3

Sang, W. C. S. (1994). Automating skills using a robot snooker player [PhD thesis]. University
of Bristol.

Silva, D., & Prada, R. (2018). MiniPool: Real-time artificial player for an 8-ball video game.
https://doi.org/10.34627/rcc.v12iespecial.13

Smith, M. (2007). PickPocket: A computer billiards shark. Artif. Intell., 171(16), 1069–1091.
https://doi.org/10.1016/j.artint.2007.04.011

Tung, K. G., Wang, S. W., Tai, W. K., Way, D. L., & Chang, C. C. (2019). Toward human-like
billiard AI bot based on backward induction and machine learning. 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), 924–932. https://doi.org/10.1109/ssci44817.
2019.9003085

Kiefl. (2024). Pooltool: A Python package for realistic billiards simulation. Journal of Open Source Software, 9(101), 7301. https://doi.org/10.
21105/joss.07301.

4

https://doi.org/10.5281/zenodo.11642058
https://doi.org/10.5281/zenodo.11642058
https://doi.org/10.1007/11922155_19
https://doi.org/10.1109/tmech.2015.2461547
https://doi.org/10.1109/arso.2012.6213402
https://doi.org/10.1007/s10489-023-04542-3
https://doi.org/10.1007/s10489-023-04542-3
https://doi.org/10.34627/rcc.v12iespecial.13
https://doi.org/10.1016/j.artint.2007.04.011
https://doi.org/10.1109/ssci44817.2019.9003085
https://doi.org/10.1109/ssci44817.2019.9003085
https://doi.org/10.21105/joss.07301
https://doi.org/10.21105/joss.07301

	Summary
	Statement of need
	Implementation
	Usage
	References

