
xesn: Echo state networks powered by Xarray and
Dask
Timothy A. Smith 1¶, Stephen G. Penny 2,3, Jason A. Platt 4, and
Tse-Chun Chen 5

1 Physical Sciences Laboratory (PSL), National Oceanic and Atmospheric Administration (NOAA),
Boulder, CO, USA 2 Sofar Ocean, San Francisco, CA, USA 3 Cooperative Institute for Research in
Environmental Sciences (CIRES) at the University of Colorado Boulder, Boulder, CO, USA 4 University
of California San Diego (UCSD), La Jolla, CA, USA 5 Pacific Northwest National Laboratory, Richland,
WA, USA ¶ Corresponding author

DOI: 10.21105/joss.07286

Software
• Review
• Repository
• Archive

Editor: Jonny Saunders
Reviewers:

• @Arcomano1234
• @wiljnich

Submitted: 24 June 2024
Published: 12 November 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Xesn is a Python package that allows scientists to easily design Echo State Networks (ESNs)
for forecasting problems. ESNs are a Recurrent Neural Network architecture introduced by
Jaeger (2001) that are part of a class of techniques termed Reservoir Computing. One defining
characteristic of these techniques is that all internal weights are determined by a handful of
global, scalar parameters, thereby avoiding problems during backpropagation and reducing
training time significantly. Because this architecture is conceptually simple, many scientists
implement ESNs from scratch, leading to questions about computational performance. Xesn

offers a straightforward, standard implementation of ESNs that operates efficiently on CPU and
GPU hardware. The package leverages optimization tools to automate the parameter selection
process, so that scientists can reduce the time finding a good architecture and focus on using
ESNs for their domain application. Importantly, the package flexibly handles forecasting tasks
for out-of-core, multi-dimensional datasets, eliminating the need to write parallel programming
code. Xesn was initially developed to handle the problem of forecasting weather dynamics,
and so it integrates naturally with Python packages that have become familiar to weather
and climate scientists such as Xarray (Hoyer & Hamman, 2017). However, the software is
ultimately general enough to be utilized in other domains where ESNs have been useful, such
as in signal processing (Jaeger & Haas, 2004).

Statement of Need
ESNs are a conceptually simple Recurrent Neural Network architecture, leading many scientists
who use ESNs to implement them from scratch. While this approach can work well for low
dimensional problems, the situation quickly becomes more complicated when:

1. deploying the code on GPUs,
2. interacting with a parameter optimization algorithm in order to tune the model, and
3. parallelizing the architecture for higher dimensional applications.

Xesn is designed to address all of these points. Additionally, while there are some design
flexibilities for the ESN architectures, the overall interface is streamlined based on the parameter
and design impact study shown by Platt et al. (2022).

Smith et al. (2024). xesn: Echo state networks powered by Xarray and Dask. Journal of Open Source Software, 9(103), 7286. https:
//doi.org/10.21105/joss.07286.

1

https://orcid.org/0000-0003-4463-6126
https://orcid.org/0000-0002-5223-8307
https://orcid.org/0000-0001-6579-6546
https://orcid.org/0000-0001-6300-5659
https://doi.org/10.21105/joss.07286
https://github.com/openjournals/joss-reviews/issues/7286
https://github.com/timothyas/xesn
https://doi.org/10.5281/zenodo.14104298
https://jon-e.net
https://orcid.org/0000-0003-0545-5066
https://github.com/Arcomano1234
https://github.com/wiljnich
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07286
https://doi.org/10.21105/joss.07286

GPU Deployment
At its core, xesn uses NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020) to perform
array based operations on CPUs. The package then harnesses the CPU/GPU agnostic code
capabilities afforded by CuPy (Okuta et al., 2017) to operate on GPUs.

Parameter Optimization
Although ESNs do not employ backpropagation to train internal weights, their behavior and
performance is highly sensitive to a set of 5 scalar parameters. Moreover, the interaction of
these parameters is often not straightforward, and it is therefore advantageous to optimize these
parameter values (Platt et al., 2022). Additionally, Platt et al. (2023) and Smith et al. (2023)
showed that adding invariant metrics to the loss function, like the leading Lyapunov exponent
or the Kinetic Energy spectrum, improved generalizability. As a generic implementation of these
metrics, xesn offers the capability to constrain the system’s Power Spectral Density during
parameter optimization in addition to a more traditional mean squared error loss function.

Xesn enables parameter optimization by integrating with the Surrogate Modeling Toolbox
(Bouhlel et al., 2020), which has a Bayesian optimization implementation. Xesn provides
a simple interface so that the user can specify all of the settings for training, parameter
optimization, and testing with a single YAML file. By doing so, all parts of the experiment are
more easily reproducible and easier to manage with scheduling systems like SLURM on HPC
environments or in the cloud.

Scaling to Higher Dimensions
It is typical for ESNs to use a hidden layer that is 𝒪(10 − 100) times larger than the input
and target space, so forecasting large target spaces quickly becomes intractable with a single
reservoir. To address this, Pathak et al. (2018) developed a parallelization strategy so that
multiple, semi-independent reservoirs make predictions of a single, high dimensional system.
This parallelization was generalized for multiple dimensions by Arcomano et al. (2020) and
Smith et al. (2023), the latter of which serves as the basis for xesn.

Xesn enables prediction for multi-dimensional systems by integrating its high level operations
with Xarray (Hoyer & Hamman, 2017). As with Xarray, users refer to dimensions based
on their named axes. Xesn parallelizes the core array based operations by using Dask (Dask
Development Team, 2016; Rocklin, 2015) to map them across available resources, from a
laptop to a distributed HPC or cloud cluster.

Existing Reservoir Computing Software
It is important to note that there is already an existing software package in Python for Reservoir
Computing, called ReservoirPy (Trouvain et al., 2020). To our knowledge, the purpose of
this package is distinctly different. The focus of ReservoirPy is to develop a highly generic
framework for Reservoir Computing, for example, allowing one to change the network node
type and graph structure underlying the reservoir, and allowing for delayed connections. On the
other hand, xesn is focused specifically on implementing ESN architectures that can scale to
multi-dimensional forecasting tasks. Additionally, while ReservoirPy enables hyperparameter
grid search capabilities via Hyperopt (Bergstra et al., 2013), xesn enables Bayesian optimization
as noted above.

Another ESN implementation is that of (Arcomano et al., 2020, 2022, 2023), available at
(Arcomano, 2023). The code implements ESNs in Fortran, and focuses on using ESNs for
hybrid physics-ML modeling.

Smith et al. (2024). xesn: Echo state networks powered by Xarray and Dask. Journal of Open Source Software, 9(103), 7286. https:
//doi.org/10.21105/joss.07286.

2

https://doi.org/10.21105/joss.07286
https://doi.org/10.21105/joss.07286

Computational Performance
Here we show brief scaling results in order to show how the standard (eager) xesn.ESN scales
with increasing hidden and input dimensions. Additionally, we provide some baseline results to
serve as guidance when configuring Dask to use the parallelized xesn.LazyESN architecture.
The scripts used to setup, execute, and visualize these scaling tests can be found here. For
methodological details on these two architectures, please refer to the methods section of the
documentation.

Standard (Eager) ESN Performance

0 5000 10000 15000
Nr

0

20

40

60

80

W
al

l t
im

e
(s

ec
on

ds
)

Wall time
 CPU
Nu = 16
Nu = 256
 GPU
Nu = 16
Nu = 256

0 5000 10000 15000
Nr

0

2

4

6

Pe
ak

 M
em

or
y

Us
ag

e
(G

B)

Peak Memory

 CPU
Nu = 16
Nu = 256
0.2 + c(aNu + bNr + 1.85N2

r)
 GPU
Nu = 16
Nu = 256
c(bNr + N2

r)

Figure 1: Wall time and peak memory usage for the standard ESN architecture for two different system
sizes (𝑁𝑢) and a variety of reservoir sizes (𝑁𝑟). Wall time is captured with Python’s time module, and
peak memory usage is captured with memory-profiler for the CPU runs and with NVIDIA Nsight Systems
for the GPU runs. Note that the peak memory usage for the GPU runs indicates GPU memory usage
only, since this is a typical bottleneck. The gray and black lines indicate the general trend in memory
usage during the CPU and GPU simulations, respectively. The empirically derived gray and black curves
are a function of the problem size, and are provided so users can estimate how much memory might be
required for their applications. The constants are as follows: 𝑎 = 250, 000 is ~3 times the total number
of samples used, 𝑏 = 20, 000 is the batch size, and 𝑐 = 8 ⋅ 109 is a conversion to GB.

For reference, in Figure 1 we show the wall time and peak memory usage required to train the
standard (eager) ESN architecture as a function of the input dimension 𝑁𝑢 and reservoir size
𝑁𝑟. We ran the scaling tests in the us-central-1c zone on Google Cloud Platform (GCP),
using a single c2-standard-60 instance to test the CPU (NumPy) implementation and a single
a2-highgpu-8g (i.e., with 8 A100 cards) instance to test the GPU (CuPy) implementation.
The training data was generated from the Lorenz96 model (Lorenz, 1996) with dimensions
𝑁𝑢 = {16, 256}, and we generated 80,000 total samples in the training dataset.

In the CPU tests, wall time scales quadratically with the reservoir size, while it is mostly
constant on a GPU. For this problem, it becomes advantageous to use GPUs once the reservoir
size is approximately 𝑁𝑟 = 8, 000 or greater. In both the CPU and GPU tests, memory scales
quadratically with reservoir size, although the increasing memory usage with reservoir size is
more dramatic on the CPU than GPU. This result serves as a motivation for our parallelized
architecture.

Parallel (Lazy) Architecture Strong Scaling Results
In order to evaluate the performance of the parallelized architecture, we take the Lorenz96
system with dimension 𝑁𝑢 = 256 and subdivide the domain into 𝑁𝑔 = {2, 4, 8, 16, 32} groups.
We then fix the problem size such that 𝑁𝑟 ∗ 𝑁𝑔 = 16, 000, so that the timing results reflect
strong scaling. That is, the results show how the code performs with increasing resources
on a fixed problem size, which in theory correspond to Amdahl’s Law (Amdahl, 1967). The

Smith et al. (2024). xesn: Echo state networks powered by Xarray and Dask. Journal of Open Source Software, 9(103), 7286. https:
//doi.org/10.21105/joss.07286.

3

https://xesn.readthedocs.io/en/latest/generated/xesn.ESN.html#xesn.ESN
https://xesn.readthedocs.io/en/latest/generated/xesn.LazyESN.html
https://github.com/timothyas/xesn/tree/1524713149efa38a0fd52ecdeb32ca5aacb62693/scaling
https://xesn.readthedocs.io/en/latest/methods.html
https://xesn.readthedocs.io/en/latest/methods.html
https://pypi.org/project/memory-profiler/
https://developer.nvidia.com/nsight-systems
https://doi.org/10.21105/joss.07286
https://doi.org/10.21105/joss.07286

training task and resources used are otherwise the same as for the standard ESN results shown
in Figure 1. We then create 3 different dask.distributed Clusters, testing:

1. Purely threaded mode (CPU only).
2. The relevant default “LocalCluster” (i.e., single node) configuration for our re-

sources. On the CPU resource, a GCP c2-standard-60 instance, the default
dask.distributed.LocalCluster has 6 workers, each with 5 threads. On the GPU
resource, a GCP a2-highgpu-8g instance, the default dask_cuda.LocalCUDACluster

has 8 workers, each with 1 thread.
3. A LocalCluster with 1 Dask worker per group. On GPUs, this assumes 1 GPU per

worker and we are able to use a maximum of 8 workers due to our available resources.

0 5 10 15 20 25 30
Number of Groups, Ng

0

1

2

3

4

5

6

7

8

9

10

S
pe

ed
up

 T
1/T

g

CPU Strong Scaling

1 Worker per Group
6 Workers (Default)
Threads
0.3x + 0.7

0 5 10 15 20 25 30
Number of Groups, Ng

0.4

0.6

0.8

1.0

1.2

S
pe

ed
up

 T
1/T

g

GPU Strong Scaling

min(1 Worker per Group,
 8 Workers)
8 Workers (Default)

Figure 2: Strong scaling results, showing speedup as a ratio of serial training time to parallel training
time as a function of number of groups or subdomains of the Lorenz96 system. Serial training time is
evaluated with 𝑁𝑢 = 256 and 𝑁𝑟 = 16, 000 with xesn.ESN from Figure 1, and parallel training time uses
xesn.LazyESN with the number of groups as shown. See text for a description of the different schedulers
used.

Figure 2 shows the strong scaling results of xesn.LazyESN for each of these cluster configura-
tions, where each point shows the ratio of the wall time with the standard (serial) architecture
to the lazy (parallel) architecture with 𝑁𝑔 groups. On CPUs, using 1 Dask worker process per
ESN group generally scales well, which makes sense because each group is trained entirely
independently.

On GPUs, the timing is largely determined by how many workers (GPUs) there are relative
to the number of groups. When the number of workers is less than the number of groups,
performance is detrimental. However, when there is at least one worker per group, the timing
is almost the same as for the single worker case, only improving performance by 10-20%. While
the strong scaling is somewhat muted, the invariance of wall time to reservoir size in Figure 1
and number of groups in Figure 2 means that the distributed GPU implementation is able to
tackle larger problems at roughly the same computational cost.

Acknowledgements
T.A. Smith and S.G. Penny acknowledge support from NOAA Grant NA20OAR4600277.
S.G. Penny and J.A. Platt acknowledge support from the Office of Naval Research (ONR)
Grants N00014-19-1-2522 and N00014-20-1- 2580. T.A. Smith acknowledges support from
the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of
Colorado Boulder. The authors thank the editor Jonny Saunders for comments that significantly
improved the manuscript, and the reviewers Troy Arcomano and William Nicholas.

Smith et al. (2024). xesn: Echo state networks powered by Xarray and Dask. Journal of Open Source Software, 9(103), 7286. https:
//doi.org/10.21105/joss.07286.

4

https://doi.org/10.21105/joss.07286
https://doi.org/10.21105/joss.07286

References
Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale

computing capabilities. Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, 483–485. https://doi.org/10.1145/1465482.1465560

Arcomano, T. (2023). Arcomano1234/SPEEDY-ML: V1 - GRL Paper. Zenodo. https:
//doi.org/10.5281/zenodo.7508156

Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., & Ott, E. (2020). A Machine
Learning-Based Global Atmospheric Forecast Model. Geophysical Research Letters, 47 (9),
e2020GL087776. https://doi.org/10.1029/2020GL087776

Arcomano, T., Szunyogh, I., Wikner, A., Hunt, B. R., & Ott, E. (2023). A Hybrid Atmospheric
Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured
by Its Physics-Based Component. Geophysical Research Letters, 50(8), e2022GL102649.
https://doi.org/10.1029/2022GL102649

Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., & Ott, E. (2022). A
Hybrid Approach to Atmospheric Modeling That Combines Machine Learning With a
Physics-Based Numerical Model. Journal of Advances in Modeling Earth Systems, 14(3),
e2021MS002712. https://doi.org/10.1029/2021MS002712

Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In S. Dasgupta & D.
McAllester (Eds.), Proceedings of the 30th international conference on machine learning
(Vol. 28, pp. 115–123). PMLR. https://proceedings.mlr.press/v28/bergstra13.html

Bouhlel, M. A., He, S., & Martins, J. R. R. A. (2020). Scalable gradient–enhanced artificial
neural networks for airfoil shape design in the subsonic and transonic regimes. Struc-
tural and Multidisciplinary Optimization, 61(4), 1363–1376. https://doi.org/10.1007/
s00158-020-02488-5

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.org

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled Arrays and Datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334/jors.148

Jaeger, H. (2001). The ”echo state” approach to analysing and training recurrent neural
networks – with an Erratum note. Bonn, Germany: German National Research Center for
Information Technology GMD Technical Report, 148(34), 13.

Jaeger, H., & Haas, H. (2004). Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication. Science, 304(5667), 78–80. https://doi.org/
10.1126/science.1091277

Lorenz, E. (1996). Predictability - a problem partly solved. Proceedings of a Seminar Held at
ECMWF on Predictability.

Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. (2017). CuPy: A NumPy-
compatible library for NVIDIA GPU calculations. Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural Information
Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf

Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-Free Prediction of Large

Smith et al. (2024). xesn: Echo state networks powered by Xarray and Dask. Journal of Open Source Software, 9(103), 7286. https:
//doi.org/10.21105/joss.07286.

5

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.5281/zenodo.7508156
https://doi.org/10.5281/zenodo.7508156
https://doi.org/10.1029/2020GL087776
https://doi.org/10.1029/2022GL102649
https://doi.org/10.1029/2021MS002712
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1007/s00158-020-02488-5
https://doi.org/10.1007/s00158-020-02488-5
https://dask.org
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.21105/joss.07286
https://doi.org/10.21105/joss.07286

Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical
Review Letters, 120(2), 024102. https://doi.org/10.1103/PhysRevLett.120.024102

Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C., & Abarbanel, H. D. I. (2022). A systematic
exploration of reservoir computing for forecasting complex spatiotemporal dynamics. Neural
Networks, 153, 530–552. https://doi.org/10.1016/j.neunet.2022.06.025

Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C., & Abarbanel, H. D. I. (2023). Constraining
Chaos: Enforcing dynamical invariants in the training of recurrent neural networks. arXiv.
https://doi.org/10.48550/arXiv.2304.12865

Rocklin, Matthew. (2015). Dask: Parallel Computation with Blocked algorithms and Task
Scheduling. In Kathryn Huff & James Bergstra (Eds.), Proceedings of the 14th Python in
Science Conference (pp. 126–132). https://doi.org/10.25080/Majora-7b98e3ed-013

Smith, T. A., Penny, S. G., Platt, J. A., & Chen, T.-C. (2023). Temporal Subsampling
Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical
Turbulence. Journal of Advances in Modeling Earth Systems, 15(12), e2023MS003792.
https://doi.org/10.1029/2023MS003792

Trouvain, N., Pedrelli, L., Dinh, T. T., & Hinaut, X. (2020). ReservoirPy: An efficient
and user-friendly library to design echo state networks. In Artificial neural networks
and machine learning – ICANN 2020 (pp. 494–505). Springer International Publishing.
https://doi.org/10.1007/978-3-030-61616-8_40

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Smith et al. (2024). xesn: Echo state networks powered by Xarray and Dask. Journal of Open Source Software, 9(103), 7286. https:
//doi.org/10.21105/joss.07286.

6

https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1016/j.neunet.2022.06.025
https://doi.org/10.48550/arXiv.2304.12865
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1029/2023MS003792
https://doi.org/10.1007/978-3-030-61616-8_40
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.07286
https://doi.org/10.21105/joss.07286

	Summary
	Statement of Need
	GPU Deployment
	Parameter Optimization
	Scaling to Higher Dimensions
	Existing Reservoir Computing Software

	Computational Performance
	Standard (Eager) ESN Performance
	Parallel (Lazy) Architecture Strong Scaling Results

	Acknowledgements
	References

