
PySLSQP: A transparent Python package for the
SLSQP optimization algorithm modernized with
utilities for visualization and post-processing
Anugrah Jo Joshy 1 and John T. Hwang1

1 Department of Mechanical and Aerospace Engineering, University of California San Diego, USA
DOI: 10.21105/joss.07246

Software
• Review
• Repository
• Archive

Editor: Prashant Jha
Reviewers:

• @hariharanragothaman
• @saaikrishnan

Submitted: 23 August 2024
Published: 30 November 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Nonlinear programming (NLP) addresses optimization problems involving nonlinear objective
and/or constraint functions defined over continuous optimization variables. These functions
are assumed to be smooth, i.e., continuously differentiable. Nonlinear programming has
applications ranging from aircraft design in engineering to optimizing portfolios in finance and
training models in machine learning. Sequential Quadratic Programming (SQP) is one of the
most successful classes of algorithms for solving NLP problems. It solves an NLP problem by
iteratively formulating and solving a sequence of Quadratic Programming (QP) subproblems.
The Sequential Least SQuares Programming algorithm, or SLSQP, has been one of the most
widely used SQP algorithms since the 1980s.

We present PySLSQP, a seamless interface for using the SLSQP algorithm from Python that
wraps the original Fortran code sourced from the SciPy repository and provides a host of new
features to improve the research utility of the original algorithm. PySLSQP uses a simple yet
modern workflow for compiling and using Fortran code from Python. This allows even beginner
developers to easily modify the algorithm in Fortran for their specific needs and use, in Python,
the wrapper auto-generated by the workflow.

Some of the additional features offered by PySLSQP include auto-generation of unavailable
derivatives using finite differences, independent scaling of the problem variables and functions,
access to internal optimization data, live-visualization, saving optimization data from each
iteration, warm/hot restarting of optimization, and various other utilities for post-processing.

PySLSQP solves the general nonlinear programming problem:

minimize
𝑥∈ℝ𝑛

𝑓(𝑥)

subject to
𝑐𝑖(𝑥) = 0, 𝑖 = 1, ...,𝑚𝑒𝑞
𝑐𝑖(𝑥) ≥ 0, 𝑖 = 𝑚𝑒𝑞 + 1, ...,𝑚
𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, ..., 𝑛

where 𝑥 ∈ ℝ𝑛 is the vector of optimization variables, 𝑓 ∶ ℝ𝑛 → ℝ is the objective function,
𝑐 ∶ ℝ𝑛 → ℝ𝑚 is the vector-valued constraint function, and 𝑙 and 𝑢 are the vectors containing the
lower and upper bounds for the optimization variables, respectively. The first 𝑚𝑒𝑞 constraints
are equalities while the remaining (𝑚 −𝑚𝑒𝑞) constraints are inequalities.

Statement of need
The original SLSQP algorithm (Kraft, 1988, 1994), implemented in Fortran by Dieter Kraft, has
been incorporated into several software packages for optimization across different programming

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

1

https://orcid.org/0009-0003-7704-2532
https://doi.org/10.21105/joss.07246
https://github.com/openjournals/joss-reviews/issues/7246
https://github.com/anugrahjo/PySLSQP
https://doi.org/10.5281/zenodo.14215102
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/hariharanragothaman
https://github.com/saaikrishnan
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07246

languages. However, the algorithm itself has undergone only minimal improvements and
has not kept pace with advancements in programming languages that could enhance its
utility. In contrast, other SQP algorithms, such as SNOPT (Gill et al., 2005), which also
began development around the same time as SLSQP, have seen continuous improvements.
SNOPT has evolved significantly through both algorithmic enhancements and feature additions,
becoming one of the leading algorithms for nonlinear programming.

The SLSQP algorithm available in most modern packages is implemented as a black-box
function that takes the optimization functions and their derivatives and then outputs the
optimized results. These packages do not provide users with any options for tuning the
original algorithm or for assessing the progress of an ongoing optimization. This lack of
transparency becomes a significant disadvantage for problems with expensive optimization
functions or derivatives. Users might have to wait for hours, only to be informed at the end of
the optimization procedure that the algorithm could not converge. Several such experiences
with multiple research applications in the authors’ lab were the primary motivation behind
developing the new PySLSQP package.

Despite the lack of timely updates to the core algorithm and usability improvements, SLSQP
continues to be widely used in research primarily due to its open-source nature and the
availability of convenient installation options through packages such as SciPy (Virtanen et al.,
2020). Many optimization practitioners use SLSQP for solving medium-sized optimization
problems with up to a hundred optimization variables and constraints. Additionally, SLSQP is
more successful compared to some of the most advanced algorithms in solving certain classes
of optimization problems, such as optimal control problems with a coarse discretization in
time.

0 25 50 75 100 125 150 175 200
Evaluations

20

30

40

50

60

70

80

Ob
je

ct
iv

e

PySLSQP (178)
SNOPT (152)
TrustConstr (200)
IPOPT (198)

Figure 1: Performance comparison for an optimal control problem.

Figure 1 above compares the convergence behaviors of PySLSQP and some of the most advanced
algorithms in nonlinear programming on a coarsely discretized optimal control problem. The
problem aims to compute the optimal control parameters for a spacecraft landing scenario.
The total number of function evaluations is indicated within parentheses in the legend. We see

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

2

https://doi.org/10.21105/joss.07246

that PySLSQP is the only algorithm that solves the problem within the 200 function evaluation
limit. Among the algorithms that failed to converge are SNOPT, TrustConstr, and IPOPT.
SNOPT is a commercial SQP algorithm, while TrustConstr and IPOPT are open-source Interior
Point (IP) algorithms. Although IPOPT appears to have converged in the plot, the solution
returned by IPOPT does not satisfy the feasibility criteria. This underscores the relevance of
SLSQP even today among state-of-the-art optimization algorithms. This problem is taken
from the suite of examples in the modOpt (Joshy & Hwang, 2024) optimization library.

There are several optimization libraries in Python that include the SLSQP algorithm, such as
SciPy (Virtanen et al., 2020), NLopt (Johnson, 2024), and pyOpt (Perez et al., 2012). NLopt
and pyOpt require users to compile the Fortran code, which greatly deters the majority of
users from utilizing SLSQP from these libraries. pyOptSparse (Wu et al., 2020) is a fork of the
pyOpt package that supports sparse constraint Jacobians and includes additional optimization
utilities for scaling, visualization, and storing optimization history. Most SLSQP users access
it through SciPy, which offers precompiled libraries that can be easily installed from PyPI
by running pip install scipy. However, like other libraries, the SLSQP implementation in
SciPy also operates as a black-box providing limited visibility into the progress of optimization
or access to internal variables during optimization iterations. This lack of transparency can be
a drawback, particularly for users needing more insight into the optimization process.

PySLSQP is developed to overcome these limitations by:

• providing a precompiled package through PyPI that can be simply installed with pip

install pyslsqp,

• offering access to internal optimization variables at each iteration through a save file,
and

• informing users about the progress of optimization through a live-updated summary file
and visualization.

The Python wrapper for PySLSQP is generated by a simple workflow automated on GitHub,
which allows even beginner developers to tune the Fortran code for their specific application and
extend the current codebase. Offering Python-level access to internal optimization variables
such as optimality and feasibility measures, Lagrange multipliers, etc. enables further analysis of
an ongoing or completed optimization. PySLSQP also features additional utilities for numerical
differentiation, scaling, warm/hot restarting, and post-processing.

By addressing the current limitations and providing new capabilities, PySLSQP enhances the
transparency and usability of the SLSQP algorithm, making it a more powerful and user-friendly
tool for solving nonlinear programming problems. PySLSQP is now integrated with the modOpt
(Joshy & Hwang, 2024) library of optimizers, through which it has successfully solved problems
in aircraft design, spacecraft optimal control, and swimming robot design.

Software features

Numerical differentiation
In the absence of user-supplied first-order derivatives of the objective or constraint functions,
PySLSQP estimates them using first-order finite differencing. Users have the option to set the
absolute or relative step size for the finite differences. However, it is generally more efficient
for users to provide the exact gradients, if possible, since each finite difference estimation
requires 𝒪(𝑛) objective or constraint evaluations. Moreover, finite difference approximations
are susceptible to subtractive cancellation errors.

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

3

https://doi.org/10.21105/joss.07246

Problem scaling
Scaling of the variables and functions is crucial for the convergence of optimization algorithms.
Poor scaling often leads to unsuccessful or extremely slow optimization. PySLSQP enables users
to scale the optimization variables, objective, and constraints individually, independent of the
user-defined optimization functions. PySLSQP automatically scales the variable bounds and
derivatives according to the user-specified scaling for the variables and functions. This allows
the user-defined initial guess, bounds, functions, and derivatives to remain the same each time
an optimization is run with a different scaling.

Live visualization
Optimization becomes slow for problems with functions or derivatives that are costly to
evaluate. In such scenarios, it is important for users to be able to monitor the optimization
process to ensure that it is proceeding smoothly. PySLSQP offers the capability to visualize the
optimization progress in real-time. This feature allows users to track convergence through
optimality and feasibility measures, and to understand how the optimization variables, objective,
constraints, Lagrange multipliers, and derivatives evolve during the optimization. An example
of a visualization generated by PySLSQP, corresponding to the optimal control problem discussed
earlier, is shown in Figure 2 below.

0 25 50 75 100 125 150 175

20

30

40

50

60

ob
je

ct
iv

e

objective

0 25 50 75 100 125 150 175

10 5

10 3

10 1

101

103

fe
as

ib
ilit

y

feasibility

Figure 2: Live visualization of the objective and feasibility.

Access to internal optimization data
In addition to live visualization, PySLSQP provides real-time access to optimization data through
dynamically updated summary and save files. PySLSQP generates a summary file that contains
a table that is updated at the end of every major iteration. This summary table lists the values
of different scalar variables in the algorithm to keep users informed about the current state of
optimization.

Users can specify which variables to save in the save file and whether they should be saved for
every iteration or only for major iterations. The save file is valuable for analyzing optimization
progress, post-processing, or performing warm/hot restarts. It can store all internal optimization
variables - including optimization variables, objective, constraints, objective gradient, constraint
Jacobian, optimality, feasibility, Lagrange multipliers, and line search step sizes - facilitating

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

4

https://doi.org/10.21105/joss.07246

advanced analysis of the optimization problem. PySLSQP provides various utilities for working
with data from save files, including functions for loading and visualizing variables.

To the best of our knowledge, PySLSQP is the only Python interface to the SLSQP algorithm
that provides this level of access to internal optimization information.

Warm/Hot starting
Re-running an optimization that was terminated prematurely can be inefficient and wasteful.
For example, if a user desires higher accuracy than was achieved in a previous run, they
would need to re-execute the optimization with a smaller accuracy parameter. Similarly, if
an optimization terminates upon reaching the iteration limit before achieving the required
accuracy, a rerun with a higher limit is necessary to complete the process. Such repeated runs
not only consume additional computational resources but also extend the overall time required
to achieve the desired results.

To address these scenarios, PySLSQP offers two options for users to efficiently restart an
optimization using data from saved files: warm starting and hot starting. In PySLSQP, warm
starting refers to restarting a previously run optimization using the most recent value of the
optimization variables 𝑥 from a saved file. During a warm start, the initial guess 𝑥0 provided
by the user is replaced with the last optimization variable iterate available in the saved file.

Hot starting in PySLSQP involves re-running a previously completed optimization by reusing the
function (objective and constraints) and derivative values from a saved file. This method is
particularly advantageous when the functions and/or their derivatives are costly to evaluate. A
significant benefit of hot starting over warm starting is that the BFGS Hessians approximated
by the SLSQP algorithm in a hot-start will follow the same path as in the previous optimization,
while also saving the cost of function and derivative evaluations. In contrast, during a warm
start, although the algorithm starts from the previous solution 𝑥∗, the Hessian is initialized as
the identity matrix, which may necessitate more iterations to achieve convergence.

Ease of extension
PySLSQP is implemented in Python and leverages NumPy’s f2py and the Meson build system for
compiling and interfacing the underlying Fortran code with Python. The Python setup script
automates the build process, making it straightforward for developers to build, install, test,
and use PySLSQP after modifying the Fortran code. The package includes GitHub workflows
to automatically generate precompiled binaries in the cloud for different system architectures
using PyPA’s cibuildwheel tool. These automated workflows ensure that PySLSQP remains
accessible to a broad range of users by providing consistent and reliable installation across
various platforms using Linux, macOS, and Windows operating systems. Additionally, this
approach allows developers to focus on enhancing the core algorithm and features without the
overhead of managing complex build environments, thus fostering an open-source community
that can contribute effectively to the development and improvement of the SLSQP algorithm.

A simple example
In this section, we solve a simple optimization problem to illustrate some of the features
explained above. In the standard SLSQP problem format presented in the Summary, the
problem is

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

5

https://doi.org/10.21105/joss.07246

minimize
𝑥∈ℝ2

𝑥2
1 + 𝑥2

2

subject to 𝑥1 + 𝑥2 − 1 = 0,
3𝑥1 + 2𝑥2 − 1 ≥ 0,

with 𝑚𝑒𝑞 = 1, 𝑙 = [0.4,−∞]𝑇, and 𝑢 = [+∞, 0.6]𝑇.

We begin by importing numpy and defining the optimization functions. We will only define the
derivatives for the constraints and let PySLSQP approximate the derivatives for the objective
function. We then define the constants for the optimization, which include the variable bounds,
number of equality constraints, initial guess, and scaling factors.

import numpy as np

def objective(x):

return x[0]**2 + x[1]**2

def constraints(x):

return np.array([x[0] + x[1] - 1, 3*x[0] + 2*x[1] - 1])

def jacobian(x):

return np.array([[1, 1], [3, 2]])

Variable bounds

x_lower = np.array([0.4, -np.inf])

x_upper = np.array([np.inf, 0.6])

Number of equality constraints

m_eq = 1

Initial guess

x0 = np.array([2,3])

Scaling factors

x_s = 10.0

o_s = 2.0

c_s = np.array([1., 0.5])

Most of the features in PySLSQP are accessed through the optimize function. We now import
optimize and solve the problem by calling it with the functions and constants defined above.
When calling optimize, we will define the absolute step size for the finite difference approxi-
mation of the objective gradient. Additionally, we instruct PySLSQP to save the optimization
variables 𝑥 and the objective value 𝑓 from each major iteration to a file named save_file.hdf5.
Lastly, we configure the arguments to live-visualize the objective 𝑓 and the variable 𝑥1 during
the optimization.

from pyslsqp import optimize

results = optimize(x0, obj=objective, con=constraints, jac=jacobian,

meq=m_eq, xl=x_lower, xu=x_upper, finite_diff_abs_step=1e-6,

x_scaler=x_s, obj_scaler=o_s, con_scaler=c_s,

save_itr='major', save_vars=['majiter', 'x', 'objective'],

save_filename="save_file.hdf5",

visualize=True, visualize_vars=['objective', 'x[0]'])

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

6

https://doi.org/10.21105/joss.07246

Print the returned results dictionary

print(results)

Once optimize is executed, a summary of the optimization will be printed to the console. The
function also returns a dictionary that contains the results of the optimization. By default,
PySLSQP writes the summary of major iterations to a file named slsqp_summary.out.

For additional usage guidelines, API reference, and installation instructions, please consult the
documentation.

Acknowledgements
This work was supported by NASA under award No. 80NSSC23M0217.

References
Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-

scale constrained optimization. SIAM Review, 47(1), 99–131. https://doi.org/10.1137/
S0036144504446096

Johnson, S. G. (2024). The NLopt nonlinear-optimization package. http://github.com/
stevengj/nlopt

Joshy, A. J., & Hwang, J. T. (2024). modOpt: A modular development environment and
library for optimization algorithms. arXiv Preprint arXiv:2410.12942. https://doi.org/10.
48550/arXiv.2410.12942

Kraft, D. (1988). A software package for sequential quadratic programming. Forschungsbericht-
Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt.

Kraft, D. (1994). Algorithm 733: TOMP–Fortran modules for optimal control calculations.
ACM Transactions on Mathematical Software (TOMS), 20(3), 262–281. https://doi.org/
10.1145/192115.192124

Perez, R. E., Jansen, P. W., & Martins, J. R. (2012). pyOpt: A Python-based object-
oriented framework for nonlinear constrained optimization. Structural and Multidisciplinary
Optimization, 45, 101–118. https://doi.org/10.1007/s00158-011-0666-3

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3),
261–272. https://doi.org/10.1038/s41592-019-0686-2

Wu, N., Kenway, G., Mader, C. A., Jasa, J., & Martins, J. R. (2020). pyOptSparse: A Python
framework for large-scale constrained nonlinear optimization of sparse systems. Journal of
Open Source Software, 5(54), 2564. https://doi.org/10.21105/joss.02564

Joshy, & Hwang. (2024). PySLSQP: A transparent Python package for the SLSQP optimization algorithm modernized with utilities for
visualization and post-processing. Journal of Open Source Software, 9(103), 7246. https://doi.org/10.21105/joss.07246.

7

https://pyslsqp.readthedocs.io/
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.48550/arXiv.2410.12942
https://doi.org/10.48550/arXiv.2410.12942
https://doi.org/10.1145/192115.192124
https://doi.org/10.1145/192115.192124
https://doi.org/10.1007/s00158-011-0666-3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.02564
https://doi.org/10.21105/joss.07246

	Summary
	Statement of need
	Software features
	Numerical differentiation
	Problem scaling
	Live visualization
	Access to internal optimization data
	Warm/Hot starting
	Ease of extension

	A simple example
	Acknowledgements
	References

