
Teaspoon: A Python Package for Topological Signal
Processing

Firas A. Khasawneh 1*, Elizabeth Munch 1*¶, Danielle Barnes1, Max M.
Chumley 1, İsmail Güzel 4,5, Audun D. Myers 2, Sunia Tanweer 1,
Sarah Tymochko 3, and Melih Yesilli 1

1 Michigan State University, East Lansing, MI, USA 2 Pacific Northwest National Lab (PNNL), USA 3
University of California, Los Angeles, USA 4 Network Technologies Department, TÜBİTAK ULAKBİM,
Ankara, TÜRKİYE 5 Institute of Applied Mathematics, Middle East Technical University, Ankara,
TÜRKİYE ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.07243

Software
• Review
• Repository
• Archive

Editor: Hugo Ledoux
Reviewers:

• @yossibokorbleile
• @EduPH

Submitted: 26 August 2024
Published: 14 March 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The field of topological data analysis (TDA) has risen in the last two decades to become a
mature field of research providing a unique perspective on data analysis. TDA consists of a
suite of tools inspired by the field of Algebraic Topology, which encodes shape and structure in
data in a quantitative manner. One particular subfield of work has focused on using TDA tools
for the analysis of time series, colloquially known as Topological Signal Processing, or TSP.
The Python package teaspoon has been built specifically to cater to the needs of researchers
working in the field of TSP, with the added benefit that the code can be used for other forms
of input data beyond signal.

Recent work has largely focused on the use of persistent homology and its variants for this
context, thus this has been the main tool utilized in teaspoon. While a full discussion of the
specifics of persistence is outside the scope of this brief paper, we give a brief introduction
here and direct the interested reader to Dey & Wang (2021) and Munch (2017) for more
information. Standard homology (see, e.g., Hatcher (2002)) is a construction that builds a
vector space for any input topological space 𝑋 and a given dimension 𝑝 of structure to be
studied. Denoted 𝐻𝑝(𝑋), the 𝑝 = 0 dimensional homology encodes the structure of connected
components; 𝑝 = 1 encodes loops; 𝑝 = 2 encodes voids; and higher dimensional versions exist
without the interpretability of these lower dimensional versions. While homology is defined for
a fixed topological space, persistent homology studies the changing homology for a changing
topological space. Indeed, through a fundamental theorem of persistence (Crawley-Boevey,
2015), we can use this sequence of vector spaces to determine when 𝑝-dimensional structures
appear (or are born) and disappear (or die). The persistence diagram is a 2D scatter plot of
points, each one giving the (birth, death) coordinates for a particular 𝑝-dimensional structure.

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

1

https://orcid.org/0000-0001-7817-7445
https://orcid.org/0000-0002-9459-9493
https://orcid.org/0000-0002-5335-5409
https://orcid.org/0000-0002-5888-7025
https://orcid.org/0000-0001-6268-9227
https://orcid.org/0000-0002-7232-0973
https://orcid.org/0000-0002-4932-6373
https://orcid.org/0000-0001-8224-7397
https://doi.org/10.21105/joss.07243
https://github.com/openjournals/joss-reviews/issues/7243
https://github.com/TeaspoonTDA/teaspoon
https://doi.org/10.5281/zenodo.14989806
https://3d.bk.tudelft.nl/hledoux
https://orcid.org/0000-0002-1251-8654
https://github.com/yossibokorbleile
https://github.com/EduPH
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07243


Figure 1: An example filtration of simplicial complexes and the corresponding persistence diagram.

As an example, in Figure 1 we have a sequence of topological spaces in which we wish to
track how the homology is changing, along with the corresponding persistence diagram (right).
Each red point in the persistence diagram at right represents a connected component (an 𝐻0
feature), and each blue point represents a cycle (a 𝐻1 feature). For example, three vertices
from 𝐾0 are connected by edges in 𝐾1, thus there are two persistence points at (0, 1) in
dimension 0 corresponding to the fact that three connected components have merged into one.
Similarly, a cycle first appears in 𝐾2 and is filled in at 𝐾4, so there is a persistence point in
dimension 1 at (2,4).

In the following section, we show how persistence can be used in a pipeline for signal processing
by aligning each of the steps with the modules of the teaspoon package.

Package Modules

Figure 2: The basic pipeline of a TSP project aligned with the modules of teaspoon.

Many topological signal processing projects can be fit into the pipeline shown in Figure 2. This
pipeline aligns with the five submodules of teaspoon, which we describe in more detail in the
following subsections.

Make Data
First, we assume that we are given a collection of time series, perhaps simulated from
varying a parameter in a known dynamical system. For testing purposes, this can be done
by generating synthetic data directly from the MakeData module. The main feature of the
module is the Dynamic Systems Library (DynSysLib) submodule, which includes a wide variety
of dynamical systems. As of writing, this includes maps, autonomous and driven dissipative
flows, conservative flows, periodic functions, noise models, and delayed flows. In addition,
there is also synthetic data generation available for other types of data often used in TDA
pipelines, including point clouds (such as those drawn from an annulus or torus) and functions
(such as Gaussian fields).

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

2

https://doi.org/10.21105/joss.07243


Parameter Selection
Once we have a time series, we can apply transforms to prepare the data for different versions
of persistence, however these often require parameter choices. One of the most commonly
used transforms in the signal processing literature is the Takens embedding (sometimes called
delay coordinate embedding) of the data into ℝ𝑑 for given dimension 𝑑 with a delay parameter
𝜏. The choices of 𝑑 and 𝜏 for the embedding are subtle, however the Parameter Selection
module has an extensive array tools for the automated computation of the parameters. These
include the standard options such as mutual information, auto-correlation, and false nearest
neighbors; along with newly developed options using TDA and persistent homology to estimate
embedding delays (Audun D. Myers et al., 2024) by finding the delay that maximizes the 1D
persistence lifetime or loop size of the attractor. We continue to implement algorithms to make
this module more comprehensive such as generalizations to the false nearest neighbors method
in (Chelidze, 2017) which uses strands of points to more reliably estimate the embedding
dimension when noise is present and similarly, the ‘Cao method’ (Cao, 1997) has the added
benefit of distinguishing deterministic signals from stochastic signals.

Signal Processing
The transforms converting a time series into a mathematical structure available for TDA
analysis are contained in the Signal Processing (SP) module. This includes both standard tools
as well as newly developed techniques that incorporate topological information. For instance,
the Takens embedding is included, which converts an input time series into a point cloud.
However, there are also more recent techniques which convert a time series into a network,
such as the Ordinal Partition Network (OPN) (McCullough et al., 2015; Audun D. Myers,
Khasawneh, et al., 2023) or the Coarse Grained State Space (CGSS) network (Audun D. Myers,
Chumley, et al., 2023; Wang & Tian, 2016). Similarly, standard entropy computations are
included, as well as persistent (as in persistent homology) entropy. For more conventional
time series analysis, a noise robust zero-crossing detection tool (Tanweer, Khasawneh, &
Munch, 2024) is included, which detects all crossings of a discrete signal at once. This
module also includes the Texture Analysis submodule, which provides techniques for comparing
experimental and nominal surface textures in manufacturing/machining applications (Chumley
et al., 2023). The Stochastic P-Bifurcation Detection provides homological techniques for
automatic and unbiased detection of Phenomenological Bifurcations in stochastic dynamical
systems (Tanweer, Khasawneh, Munch, & Tempelman, 2024; Tanweer & Khasawneh, 2024).

Topological Data Analysis
After performing any necessary transformations, the Topological Data Analaysis (TDA) module
has tools for computing topological signatures of data persistence on input data. This module
is largely wrappers for externally available code since much work has already been done to
optimize this aspect of the pipeline. Point cloud persistence, for instance when taking the
Takens embedding as input, is computed using the external ripser Python package (Bauer,
2021) in Scikit-TDA (Saul & Tralie, 2019). Zero dimensional sublevel set persistence is
computed with entirely internal code (Audun D. Myers et al., 2022). The module also offers
code for computing bottleneck distance—which relies on the scikit-tda persim package (Saul
& Tralie, 2019)—and Wasserstein distance based on Optimal Transport Theory. There is also
code which makes it easier to use the fast zigzag software (Dey & Hou, 2022) by providing a
wrapper for generating the input file given a list of point clouds as well as filtering the resultant
persistence diagram. As newly available code is released and maintained, this means that all
internal functions can be switched to other external packages as needed without a great deal
of update to the remainder of the code.

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

3

https://doi.org/10.21105/joss.07243


Machine Learning
Finally, once the time series has been converted into a persistence diagram representation,
the Machine Learning (ML) module gives a variety of featurization methods to convert the
persistence diagram into a vector based representation amenable to regression and classification
tasks. These include persistence landscapes (Bubenik, 2015), persistence images (Adams et
al., 2017), Carlsson coordinates (Adcock et al., 2016), template functions (Perea et al., 2022),
path signatures (Chevyrev et al., 2020), and kernel methods (Reininghaus et al., 2015).

Statement of need
The teaspoon package is focused on applications of TDA to time series with an emphasis on
ease of usability in a Python environment. Optimization of the computation of persistence itself
has been well studied by others and excellent code already exists for this aspect of the pipeline
(Otter et al., 2017). Where applicable, teaspoon uses these packages, particularly for persistent
homology computations. Existing packages include Ripser (Bauer, 2021), GUDHI (Boissonnat
et al., 2016), giotto-tda (Tauzin et al., 2020), dionysus2 (Morozov, 2019), scikit-tda (Saul &
Tralie, 2019), R-TDA (Fasy et al., 2014), and the Topology Toolkit (TTK) (Bin Masood et
al., 2019). However, persistence in these packages is often provided in a very general context.
So, teaspoon fills the gap by providing tailored, well-documented tools for time series that can
be used with a lower barrier to entry. This is not covered in other packages, which are meant
for broad applicability without specialization.

Representative Publications Using Teaspoon
The teaspoon package was started in 2017 as a GitLab repository, and was ported to GitHub
in 2018. A previous but now outdated paper outlined the basic functionality of teaspoon at
the time (Audun D. Myers et al., 2020). Because of its longevity, we provide a non-exhaustive
but extensive list of papers (Chumley et al., 2023; Elchesen et al., 2022; Gilpin, 2021; Güzel et
al., 2022; Jones & Wei, 2023; Audun D. Myers, Kvinge, et al., 2023; Audun D. Myers et al.,
2022; Audun D. Myers, Khasawneh, et al., 2023; Audun D. Myers, Muñoz, et al., 2023, 2023;
Audun D. Myers, Chumley, et al., 2023; Perea et al., 2022; Tymochko et al., 2019) as well as
theses (Collins, 2022; Tymochko, 2022; Yi, 2022) that have utilized teaspoon.

Acknowledgements
This material is based in part upon work supported by the Air Force Office of Scientific Research
under Award No. FA9550-22-1-0007. It was additionally supported in part by the National
Science Foundation through grants CCF-1907591, CCF-2106578, and CCF-2142713.

References
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova,

S., Hanson, E., Motta, F., & Ziegelmeier, L. (2017). Persistence images: A stable vector
representation of persistent homology. Journal of Machine Learning Research, 18(8), 1–35.
http://jmlr.org/papers/v18/16-337.html

Adcock, A., Carlsson, E., & Carlsson, G. (2016). The ring of algebraic functions on persistence
bar codes. Homology, Homotopy and Applications, 18(1), 381–402. https://doi.org/10.
4310/HHA.2016.v18.n1.a21

Bauer, U. (2021). Ripser: Efficient computation of Vietoris-Rips persistence barcodes. J. Appl.
Comput. Topol., 5(3), 391–423. https://doi.org/10.1007/s41468-021-00071-5

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

4

http://jmlr.org/papers/v18/16-337.html
https://doi.org/10.4310/HHA.2016.v18.n1.a21
https://doi.org/10.4310/HHA.2016.v18.n1.a21
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.21105/joss.07243


Bin Masood, T., Budin, J., Falk, M., Favelier, G., Garth, C., Gueunet, C., Guillou, P.,
Hofmann, L., Hristov, P., Kamakshidasan, A., Kappe, C., Klacansky, P., Laurin, P., Levine,
J., Lukasczyk, J., Sakurai, D., Soler, M., Steneteg, P., Tierny, J., … Wozniak, M. (2019).
An overview of the Topology ToolKit. TopoInVis.

Boissonnat, J.-D., Glisse, M., Kramar, M., Maria, C., & Rouvreau, V. (2016). GUDHI:
Geometry understanding in higher dimensions. http://gudhi.gforge.inria.fr/. http://gudhi.
gforge.inria.fr/

Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal
of Machine Learning Research, 16, 77–102. http://jmlr.org/papers/v16/bubenik15a.html

Cao, L. (1997). Practical method for determining the minimum embedding dimension of a
scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43–50. https://doi.org/10.
1016/s0167-2789(97)00118-8

Chelidze, D. (2017). Reliable estimation of minimum embedding dimension through statistical
analysis of nearest neighbors. Journal of Computational and Nonlinear Dynamics, 12(5),
051024. https://doi.org/10.1115/1.4036814

Chevyrev, I., Nanda, V., & Oberhauser, H. (2020). Persistence paths and signature features in
topological data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(1), 192–202. https://doi.org/10.1109/TPAMI.2018.2885516

Chumley, M. M., Yesilli, M. C., Chen, J., Khasawneh, F. A., & Guo, Y. (2023). Pattern
characterization using topological data analysis: Application to piezo vibration striking
treatment. Precision Engineering, 83, 42–57. https://doi.org/10.1016/j.precisioneng.2023.
05.005

Collins, J. R. (2022). Topological time-series classification [PhD thesis]. In ProQuest Disserta-
tions and Theses (p. 105). ISBN: 9798802715796

Crawley-Boevey, W. (2015). Decomposition of pointwise finite-dimensional persistence modules.
Journal of Algebra and Its Applications, 14(05), 1550066. https://doi.org/10.1142/
s0219498815500668

Dey, T. K., & Hou, T. (2022). Fast computation of zigzag persistence. https://doi.org/10.
48550/arxiv.2204.11080

Dey, T. K., & Wang, Y. (2021). Computational topology for data analysis. Cambridge
University Press.

Elchesen, A., Hartsock, I., Perea, J. A., & Rask, T. (2022). Learning on persistence diagrams
as Radon measures. https://doi.org/10.48550/ARXIV.2212.08295

Fasy, B. T., Kim, J., Lecci, F., & Maria, C. (2014). Introduction to the r package TDA.
https://arxiv.org/abs/http://arxiv.org/abs/1411.1830v2

Gilpin, W. (2021). Chaos as an interpretable benchmark for forecasting and data-driven
modelling. NeurIPS (Neural Information Processing Systems) 2021. https://doi.org/10.
48550/ARXIV.2110.05266

Güzel, İ., Munch, E., & Khasawneh, F. A. (2022). Detecting bifurcations in dynamical systems
with CROCKER plots. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(9).
https://doi.org/10.1063/5.0102421

Hatcher, A. (2002). Algebraic topology. Cambridge University Press.

Jones, B., & Wei, G. (2023). Persistent directed flag Laplacian. https://doi.org/10.48550/
ARXIV.2312.02099

McCullough, M., Small, M., Stemler, T., & Iu, H. H.-C. (2015). Time lagged ordinal
partition networks for capturing dynamics of continuous dynamical systems. Chaos: An

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

5

http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/
http://jmlr.org/papers/v16/bubenik15a.html
https://doi.org/10.1016/s0167-2789(97)00118-8
https://doi.org/10.1016/s0167-2789(97)00118-8
https://doi.org/10.1115/1.4036814
https://doi.org/10.1109/TPAMI.2018.2885516
https://doi.org/10.1016/j.precisioneng.2023.05.005
https://doi.org/10.1016/j.precisioneng.2023.05.005
https://ezproxy.msu.edu/login?url=https://www.proquest.com/dissertations-theses/topological-time-series-classification/docview/2671576993/se-2
https://doi.org/10.1142/s0219498815500668
https://doi.org/10.1142/s0219498815500668
https://doi.org/10.48550/arxiv.2204.11080
https://doi.org/10.48550/arxiv.2204.11080
https://doi.org/10.48550/ARXIV.2212.08295
https://arxiv.org/abs/http://arxiv.org/abs/1411.1830v2
https://doi.org/10.48550/ARXIV.2110.05266
https://doi.org/10.48550/ARXIV.2110.05266
https://doi.org/10.1063/5.0102421
https://doi.org/10.48550/ARXIV.2312.02099
https://doi.org/10.48550/ARXIV.2312.02099
https://doi.org/10.21105/joss.07243


Interdisciplinary Journal of Nonlinear Science, 25(5), 053101. https://doi.org/10.1063/1.
4919075

Morozov, D. (2019). Dionysus2. http://www.mrzv.org/software/dionysus2/.

Munch, E. (2017). A user’s guide to topological data analysis. Journal of Learning Analytics,
4(2). https://doi.org/10.18608/jla.2017.42.6

Myers, Audun D., Chumley, M. M., & Khasawneh, F. A. (2024). Delay parameter selection
in permutation entropy using topological data analysis. La Matematica, 1–34. https:
//doi.org/10.1007/s44007-024-00110-4

Myers, Audun D., Chumley, M. M., Khasawneh, F. A., & Munch, E. (2023). Persistent
homology of coarse-grained state-space networks. Physical Review E, 107(3), 034303.
https://doi.org/10.1103/physreve.107.034303

Myers, Audun D., Khasawneh, F. A., & Fasy, B. T. (2022). ANAPT: Additive noise analysis
for persistence thresholding. Foundations of Data Science, 4(2), 243. https://doi.org/10.
3934/fods.2022005

Myers, Audun D., Khasawneh, F. A., & Munch, E. (2023). Persistence of weighted ordinal
partition networks for dynamic state detection. SIAM Journal on Applied Dynamical
Systems, 22(1), 65–89. https://doi.org/10.1137/22m1476848

Myers, Audun D., Kvinge, H., & Emerson, T. (2023). TopFusion: Using topological feature
space for fusion and imputation in multi-modal data. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 600–609.
https://doi.org/10.1109/cvprw59228.2023.00067

Myers, Audun D., Muñoz, D., Khasawneh, F. A., & Munch, E. (2023). Temporal network
analysis using zigzag persistence. EPJ Data Science, 12(1). https://doi.org/10.1140/
epjds/s13688-023-00379-5

Myers, Audun D., Yesilli, M., Tymochko, S., Khasawneh, F., & Munch, E. (2020). Teaspoon:
A comprehensive Python package for topological signal processing. https://openreview.
net/pdf?id=qUoVqrIcy2P

Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., & Harrington, H. A. (2017). A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1). https:
//doi.org/10.1140/epjds/s13688-017-0109-5

Perea, J. A., Munch, E., & Khasawneh, F. A. (2022). Approximating continuous functions on
persistence diagrams using template functions. Foundations of Computational Mathematics,
23(4), 1215–1272. https://doi.org/10.1007/s10208-022-09567-7

Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for
topological machine learning. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 4741–4748. https://doi.org/10.1109/CVPR.2015.7299106

Saul, N., & Tralie, C. (2019). Scikit-TDA: Topological data analysis for Python. https:
//doi.org/10.5281/zenodo.2533369

Tanweer, S., & Khasawneh, F. A. (2024). Topological detection of phenomenological bifur-
cations with unreliable kernel density estimates. Probabilistic Engineering Mechanics, 76,
103634. https://doi.org/10.1016/j.probengmech.2024.103634

Tanweer, S., Khasawneh, F. A., & Munch, E. (2024). Robust crossings detection in noisy
signals using topological signal processing. Foundations of Data Science, 6(2), 154–171.
https://doi.org/10.3934/fods.2024006

Tanweer, S., Khasawneh, F. A., Munch, E., & Tempelman, J. R. (2024). A topological
framework for identifying phenomenological bifurcations in stochastic dynamical systems.
Nonlinear Dynamics, 112(6), 4687–4703. https://doi.org/10.1007/s11071-024-09289-1

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

6

https://doi.org/10.1063/1.4919075
https://doi.org/10.1063/1.4919075
http://www.mrzv.org/software/dionysus2/
https://doi.org/10.18608/jla.2017.42.6
https://doi.org/10.1007/s44007-024-00110-4
https://doi.org/10.1007/s44007-024-00110-4
https://doi.org/10.1103/physreve.107.034303
https://doi.org/10.3934/fods.2022005
https://doi.org/10.3934/fods.2022005
https://doi.org/10.1137/22m1476848
https://doi.org/10.1109/cvprw59228.2023.00067
https://doi.org/10.1140/epjds/s13688-023-00379-5
https://doi.org/10.1140/epjds/s13688-023-00379-5
https://openreview.net/pdf?id=qUoVqrIcy2P
https://openreview.net/pdf?id=qUoVqrIcy2P
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1007/s10208-022-09567-7
https://doi.org/10.1109/CVPR.2015.7299106
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.1016/j.probengmech.2024.103634
https://doi.org/10.3934/fods.2024006
https://doi.org/10.1007/s11071-024-09289-1
https://doi.org/10.21105/joss.07243


Tauzin, G., Lupo, U., Tunstall, L., Pérez, J. B., Caorsi, M., Medina-Mardones, A., Dassatti,
A., & Hess, K. (2020). Giotto-tda: A topological data analysis toolkit for machine learning
and data exploration. https://arxiv.org/abs/2004.02551

Tymochko, S. (2022). Topological approaches for quantifying the shape of time series data
[PhD thesis]. In ProQuest Dissertations and Theses (p. 123). ISBN: 979-8-209-98467-2

Tymochko, S., Munch, E., & Khasawneh, F. A. (2019, December). Adaptive partitioning for
template functions on persistence diagrams. 2019 18th IEEE International Conference on
Machine Learning and Applications (ICMLA). https://doi.org/10.1109/icmla.2019.00202

Wang, M., & Tian, L. (2016). From time series to complex networks: The phase space
coarse graining. Physica A: Statistical Mechanics and Its Applications, 461, 456–468.
https://doi.org/10.1016/j.physa.2016.06.028

Yi, W. (2022). When hearts beat as one – cardiac dynamics and synchrony in string quartet
performances [Master’s thesis, University of Oslo]. https://www.duo.uio.no/handle/10852/
96059

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

7

https://arxiv.org/abs/2004.02551
https://ezproxy.msu.edu/login?url=https://www.proquest.com/dissertations-theses/topological-approaches-quantifying-shape-time/docview/2649015601/se-2
https://doi.org/10.1109/icmla.2019.00202
https://doi.org/10.1016/j.physa.2016.06.028
https://www.duo.uio.no/handle/10852/96059
https://www.duo.uio.no/handle/10852/96059
https://doi.org/10.21105/joss.07243

	Summary
	Package Modules
	Make Data
	Parameter Selection
	Signal Processing
	Topological Data Analysis
	Machine Learning

	Statement of need
	Representative Publications Using Teaspoon
	Acknowledgements
	References

