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Summary
The field of topological data analysis (TDA) has risen in the last two decades to become a
mature field of research providing a unique perspective on data analysis. TDA consists of a
suite of tools inspired by the field of Algebraic Topology, which encodes shape and structure in
data in a quantitative manner. One particular subfield of work has focused on using TDA tools
for the analysis of time series, colloquially known as Topological Signal Processing, or TSP.
The Python package teaspoon has been built specifically to cater to the needs of researchers
working in the field of TSP, with the added benefit that the code can be used for other forms
of input data beyond signal.

Recent work has largely focused on the use of persistent homology and its variants for this
context, thus this has been the main tool utilized in teaspoon. While a full discussion of the
specifics of persistence is outside the scope of this brief paper, we give a brief introduction
here and direct the interested reader to Dey & Wang (2021) and Munch (2017) for more
information. Standard homology (see, e.g., Hatcher (2002)) is a construction that builds a
vector space for any input topological space 𝑋 and a given dimension 𝑝 of structure to be
studied. Denoted 𝐻𝑝(𝑋), the 𝑝 = 0 dimensional homology encodes the structure of connected
components; 𝑝 = 1 encodes loops; 𝑝 = 2 encodes voids; and higher dimensional versions exist
without the interpretability of these lower dimensional versions. While homology is defined for
a fixed topological space, persistent homology studies the changing homology for a changing
topological space. Indeed, through a fundamental theorem of persistence (Crawley-Boevey,
2015), we can use this sequence of vector spaces to determine when 𝑝-dimensional structures
appear (or are born) and disappear (or die). The persistence diagram is a 2D scatter plot of
points, each one giving the (birth, death) coordinates for a particular 𝑝-dimensional structure.
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Figure 1: An example filtration of simplicial complexes and the corresponding persistence diagram.

As an example, in Figure 1 we have a sequence of topological spaces in which we wish to
track how the homology is changing, along with the corresponding persistence diagram (right).
Each red point in the persistence diagram at right represents a connected component (an 𝐻0
feature), and each blue point represents a cycle (a 𝐻1 feature). For example, three vertices
from 𝐾0 are connected by edges in 𝐾1, thus there are two persistence points at (0, 1) in
dimension 0 corresponding to the fact that three connected components have merged into one.
Similarly, a cycle first appears in 𝐾2 and is filled in at 𝐾4, so there is a persistence point in
dimension 1 at (2,4).

In the following section, we show how persistence can be used in a pipeline for signal processing
by aligning each of the steps with the modules of the teaspoon package.

Package Modules

Figure 2: The basic pipeline of a TSP project aligned with the modules of teaspoon.

Many topological signal processing projects can be fit into the pipeline shown in Figure 2. This
pipeline aligns with the five submodules of teaspoon, which we describe in more detail in the
following subsections.

Make Data
First, we assume that we are given a collection of time series, perhaps simulated from
varying a parameter in a known dynamical system. For testing purposes, this can be done
by generating synthetic data directly from the MakeData module. The main feature of the
module is the Dynamic Systems Library (DynSysLib) submodule, which includes a wide variety
of dynamical systems. As of writing, this includes maps, autonomous and driven dissipative
flows, conservative flows, periodic functions, noise models, and delayed flows. In addition,
there is also synthetic data generation available for other types of data often used in TDA
pipelines, including point clouds (such as those drawn from an annulus or torus) and functions
(such as Gaussian fields).

Khasawneh et al. (2025). Teaspoon: A Python Package for Topological Signal Processing. Journal of Open Source Software, 10(107), 7243.
https://doi.org/10.21105/joss.07243.

2

https://doi.org/10.21105/joss.07243


Parameter Selection
Once we have a time series, we can apply transforms to prepare the data for different versions
of persistence, however these often require parameter choices. One of the most commonly
used transforms in the signal processing literature is the Takens embedding (sometimes called
delay coordinate embedding) of the data into ℝ𝑑 for given dimension 𝑑 with a delay parameter
𝜏. The choices of 𝑑 and 𝜏 for the embedding are subtle, however the Parameter Selection
module has an extensive array tools for the automated computation of the parameters. These
include the standard options such as mutual information, auto-correlation, and false nearest
neighbors; along with newly developed options using TDA and persistent homology to estimate
embedding delays (Audun D. Myers et al., 2024) by finding the delay that maximizes the 1D
persistence lifetime or loop size of the attractor. We continue to implement algorithms to make
this module more comprehensive such as generalizations to the false nearest neighbors method
in (Chelidze, 2017) which uses strands of points to more reliably estimate the embedding
dimension when noise is present and similarly, the ‘Cao method’ (Cao, 1997) has the added
benefit of distinguishing deterministic signals from stochastic signals.

Signal Processing
The transforms converting a time series into a mathematical structure available for TDA
analysis are contained in the Signal Processing (SP) module. This includes both standard tools
as well as newly developed techniques that incorporate topological information. For instance,
the Takens embedding is included, which converts an input time series into a point cloud.
However, there are also more recent techniques which convert a time series into a network,
such as the Ordinal Partition Network (OPN) (McCullough et al., 2015; Audun D. Myers,
Khasawneh, et al., 2023) or the Coarse Grained State Space (CGSS) network (Audun D. Myers,
Chumley, et al., 2023; Wang & Tian, 2016). Similarly, standard entropy computations are
included, as well as persistent (as in persistent homology) entropy. For more conventional
time series analysis, a noise robust zero-crossing detection tool (Tanweer, Khasawneh, &
Munch, 2024) is included, which detects all crossings of a discrete signal at once. This
module also includes the Texture Analysis submodule, which provides techniques for comparing
experimental and nominal surface textures in manufacturing/machining applications (Chumley
et al., 2023). The Stochastic P-Bifurcation Detection provides homological techniques for
automatic and unbiased detection of Phenomenological Bifurcations in stochastic dynamical
systems (Tanweer, Khasawneh, Munch, & Tempelman, 2024; Tanweer & Khasawneh, 2024).

Topological Data Analysis
After performing any necessary transformations, the Topological Data Analaysis (TDA) module
has tools for computing topological signatures of data persistence on input data. This module
is largely wrappers for externally available code since much work has already been done to
optimize this aspect of the pipeline. Point cloud persistence, for instance when taking the
Takens embedding as input, is computed using the external ripser Python package (Bauer,
2021) in Scikit-TDA (Saul & Tralie, 2019). Zero dimensional sublevel set persistence is
computed with entirely internal code (Audun D. Myers et al., 2022). The module also offers
code for computing bottleneck distance—which relies on the scikit-tda persim package (Saul
& Tralie, 2019)—and Wasserstein distance based on Optimal Transport Theory. There is also
code which makes it easier to use the fast zigzag software (Dey & Hou, 2022) by providing a
wrapper for generating the input file given a list of point clouds as well as filtering the resultant
persistence diagram. As newly available code is released and maintained, this means that all
internal functions can be switched to other external packages as needed without a great deal
of update to the remainder of the code.
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Machine Learning
Finally, once the time series has been converted into a persistence diagram representation,
the Machine Learning (ML) module gives a variety of featurization methods to convert the
persistence diagram into a vector based representation amenable to regression and classification
tasks. These include persistence landscapes (Bubenik, 2015), persistence images (Adams et
al., 2017), Carlsson coordinates (Adcock et al., 2016), template functions (Perea et al., 2022),
path signatures (Chevyrev et al., 2020), and kernel methods (Reininghaus et al., 2015).

Statement of need
The teaspoon package is focused on applications of TDA to time series with an emphasis on
ease of usability in a Python environment. Optimization of the computation of persistence itself
has been well studied by others and excellent code already exists for this aspect of the pipeline
(Otter et al., 2017). Where applicable, teaspoon uses these packages, particularly for persistent
homology computations. Existing packages include Ripser (Bauer, 2021), GUDHI (Boissonnat
et al., 2016), giotto-tda (Tauzin et al., 2020), dionysus2 (Morozov, 2019), scikit-tda (Saul &
Tralie, 2019), R-TDA (Fasy et al., 2014), and the Topology Toolkit (TTK) (Bin Masood et
al., 2019). However, persistence in these packages is often provided in a very general context.
So, teaspoon fills the gap by providing tailored, well-documented tools for time series that can
be used with a lower barrier to entry. This is not covered in other packages, which are meant
for broad applicability without specialization.

Representative Publications Using Teaspoon
The teaspoon package was started in 2017 as a GitLab repository, and was ported to GitHub
in 2018. A previous but now outdated paper outlined the basic functionality of teaspoon at
the time (Audun D. Myers et al., 2020). Because of its longevity, we provide a non-exhaustive
but extensive list of papers (Chumley et al., 2023; Elchesen et al., 2022; Gilpin, 2021; Güzel et
al., 2022; Jones & Wei, 2023; Audun D. Myers, Kvinge, et al., 2023; Audun D. Myers et al.,
2022; Audun D. Myers, Khasawneh, et al., 2023; Audun D. Myers, Muñoz, et al., 2023, 2023;
Audun D. Myers, Chumley, et al., 2023; Perea et al., 2022; Tymochko et al., 2019) as well as
theses (Collins, 2022; Tymochko, 2022; Yi, 2022) that have utilized teaspoon.
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