
Static Code Analysis for R
Jim Hester 1, Florent Angly 2, Michael Chirico 3, Russ Hyde4, Ren
Kun5, Indrajeet Patil 6, and Alexander Rosenstock7

1 Netflix 2 The University of Queensland 3 Google 4 Jumping Rivers 5 Unknown 6 Carl Zeiss AG,
Germany 7 Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf

DOI: 10.21105/joss.07240

Software
• Review
• Repository
• Archive

Editor: Oskar Laverny
Reviewers:

• @JosiahParry
• @SaranjeetKaur

Submitted: 03 September 2024
Published: 03 April 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of Need
In computer programming, “linting” is the process of analyzing the source code to identify
possible programming and stylistic problems (Wikipedia contributors, 2024a) and a linter is
a tool used for linting. A linter analyzes code to identify potential errors, stylistic issues, or
deviations from coding standards. It helps ensure consistency, readability, and best practices
by flagging common mistakes, such as syntax errors, unused variables, or improper formatting.
Linters are essential for improving code quality, preventing bugs, and maintaining a clean
codebase, especially in collaborative development environments (Wikipedia contributors, 2024b).
{lintr} is an open-source package that provides linters for the R programming language,
which is an interpreted, dynamically-typed programming language (R Core Team, 2023), and
is used by a wide range of researchers and data scientists. {lintr} can thus act as a valuable
tool for R users to help improve the quality and reliability of their code.

Features
By default, {lintr} enforces the tidyverse style guide Müller et al. (2024). In this respect, it
differs from other static code analysis tools in R (like {codetools} (Tierney, 2024)), which
are not opinionated and don’t enforce any particular style of writing code, but, rather, check R
code for possible problems (incidentally, {lintr} uses {codetools} as a backend for object
usage linters). Additionally, {lintr} is concerned only with R code, so code-adjacent text
like inline {roxygen2} comments (Wickham et al., 2024) will not be covered (cf. {roxylint}
(Kelkhoff, 2024)).

As of this writing, {lintr} offers 113 linters.

library(lintr)

length(all_linters())

#> [1] 113

Naturally, we can’t discuss all of them here. To see the most up-to-date details about all
the available linters, we encourage readers to visit https://lintr.r-lib.org/dev/reference/index.
html#individual-linters.

We will showcase one linter for each kind of common problem found in R code.

• Best practices

{lintr} offers linters that can detect problematic antipatterns and suggest alternatives that
follow best practices.

For example, expressions like ifelse(x, TRUE, FALSE) and ifelse(x, FALSE, TRUE) are
redundant; just x or !x suffice in R code where logical vectors are a core data structure. The

Hester et al. (2025). Static Code Analysis for R. Journal of Open Source Software, 10(108), 7240. https://doi.org/10.21105/joss.07240. 1

https://orcid.org/0000-0002-2739-7082
https://orcid.org/0000-0002-8999-0738
https://orcid.org/0000-0003-0787-087X
https://orcid.org/0000-0003-1995-6531
https://doi.org/10.21105/joss.07240
https://github.com/openjournals/joss-reviews/issues/7240
https://github.com/r-lib/lintr
https://doi.org/10.5281/zenodo.15090477
https://www.actuarial.science
https://orcid.org/0000-0002-7508-999X
https://github.com/JosiahParry
https://github.com/SaranjeetKaur
https://creativecommons.org/licenses/by/4.0/
https://lintr.r-lib.org/dev/reference/index.html#individual-linters
https://lintr.r-lib.org/dev/reference/index.html#individual-linters
https://doi.org/10.21105/joss.07240

redundant_ifelse_linter() linter detects such discouraged usages.

lint(

text = "ifelse(x >= 2.5, TRUE, FALSE)",

linters = redundant_ifelse_linter()

)

#> <text>:1:1: warning: [redundant_ifelse_linter] Just use the

#> logical condition (or its negation) directly instead of

#> calling ifelse(x, TRUE, FALSE)

#> ifelse(x >= 2.5, TRUE, FALSE)

#> ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~

lint(

text = "x >= 2.5",

linters = redundant_ifelse_linter()

)

#> i No lints found.

• Efficiency

Sometimes users might not be aware of a more efficient way offered by R for carrying out a
computation. {lintr} offers linters to improve code efficiency by avoiding common inefficient
patterns.

For example, the any_is_na_linter() linter detects usages of any(is.na(x)) and suggests
anyNA(x) as a more efficient alternative to detect presence of any missing values.

lint(

text = "any(is.na(x), na.rm = TRUE)",

linters = any_is_na_linter()

)

#> <text>:1:1: warning: [any_is_na_linter] anyNA(x) is better

#> than any(is.na(x)).

#> any(is.na(x), na.rm = TRUE)

#> ^~~~~~~~~~~~~~~~~~~~~~~~~~~

anyNA() in R is more efficient than any(is.na()) because it stops execution once a missing
value is found, while is.na() evaluates the entire vector.

lint(

text = "anyNA(x)",

linters = any_is_na_linter()

)

#> i No lints found.

• Readability

Coders spend significantly more time reading than writing code (McConnell, 2004). Thus,
writing readable code makes the code more maintainable and reduces the possibility of
introducing bugs stemming from a poor understanding of the code.

{lintr} provides a number of linters that suggest more readable alternatives. For exam-
ple, comparison_negation_linter() blocks usages like !(x == y) where a direct relational
operator is appropriate.

lint(

text = "!x == 2",

linters = comparison_negation_linter()

)

#> <text>:1:1: warning: [comparison_negation_linter] Use x !=

#> y, not !(x == y).

Hester et al. (2025). Static Code Analysis for R. Journal of Open Source Software, 10(108), 7240. https://doi.org/10.21105/joss.07240. 2

https://doi.org/10.21105/joss.07240

#> !x == 2

#> ^~~~~~~

Note also the complicated operator precedence. The more readable alternative here uses !=:

lint(

text = "x != 2",

linters = comparison_negation_linter()

)

#> i No lints found.

• Tidyverse style

{lintr} also provides linters to enforce the style used throughout the {tidyverse} (Wickham
et al., 2019) ecosystem of R packages. This style of coding has been outlined in the tidyverse
style guide (Wickham, 2023).

For example, the style guide recommends using snake_case for identifiers:

lint(

text = "MyVar <- 1L",

linters = object_name_linter()

)

#> <text>:1:1: style: [object_name_linter] Variable and

#> function name style should match snake_case or symbols.

#> MyVar <- 1L

#> ^~~~~

lint(

text = "my_var <- 1L",

linters = object_name_linter()

)

#> i No lints found.

• Common mistakes

One category of linters helps you detect some common mistakes statically and provide early
feedback.

For example, duplicate arguments in function calls can sometimes cause run-time errors:

mean(x = 1:5, x = 2:3)

#> Error in mean(x = 1:5, x = 2:3): formal argument "x" matched by multiple actual arguments

But duplicate_argument_linter() can check for this statically:

lint(

text = "mean(x = 1:5, x = 2:3)",

linters = duplicate_argument_linter()

)

#> <text>:1:15: warning: [duplicate_argument_linter] Avoid

#> duplicate arguments in function calls.

#> mean(x = 1:5, x = 2:3)

#> ^

Even for cases where duplicate arguments are not an error, this linter explicitly discourages
duplicate arguments.

lint(

text = "list(x = TRUE, x = FALSE)",

linters = duplicate_argument_linter()

)

Hester et al. (2025). Static Code Analysis for R. Journal of Open Source Software, 10(108), 7240. https://doi.org/10.21105/joss.07240. 3

https://doi.org/10.21105/joss.07240

#> <text>:1:16: warning: [duplicate_argument_linter] Avoid

#> duplicate arguments in function calls.

#> list(x = TRUE, x = FALSE)

#> ^

This is because objects with duplicated names objects can be hard to work with programmatically
and should typically be avoided.

l <- list(x = TRUE, x = FALSE)

l["x"]

#> $x

#> [1] TRUE

l[names(l) == "x"]

#> $x

#> [1] TRUE

#>

#> $x

#> [1] FALSE

Extensibility
{lintr} is designed for extensibility by allowing users to easily create custom linting rules.
There are two main ways to customize it:

• Use additional arguments in existing linters. For example, although tidyverse style guide
prefers snake_case for identifiers, if a project’s conventions require it, the relevant linter
can be customized to support it:

lint(

text = "my.var <- 1L",

linters = object_name_linter(styles = "dotted.case")

)

#> i No lints found.

• Create new linters (by leveraging functions like lintr::make_linter_from_xpath())
tailored to match project- or organization-specific coding standards.

Indeed, {goodpractice} (Padgham et al., 2024) bundles a set of custom linters that are
not part of the default set of {lintr} linters, while {box.linters} (Basa & Nowicki, 2024)
extends {lintr} to support {box} modules (Rudolph, 2024) and {checklist} includes linters
as one of the strict checks for R packages (Onkelinx, 2024). {flir} (Bacher, 2024) is a
Rust-backed analogue inspired by {lintr} that also provides support for fixing lints.

Benefits of using {lintr}

There are several benefits to using {lintr} to analyze and improve R code. One of the most
obvious is that it can help users identify and fix problems in their code, which can save time
and effort during the development process. By catching issues early on, {lintr} can help
prevent bugs and other issues from creeping into code, which can save time and effort when it
comes to debugging and testing.

Another benefit of {lintr} is that it can help users write more readable and maintainable
code. By enforcing a consistent style and highlighting potential issues, {lintr} can help users
write code that is easier to understand and work with. This is especially important for larger
projects or teams, where multiple contributors may be working on the same codebase and it is
important to ensure that code is easy to follow and understand, particularly when frequently
switching context among code primarily authored by different people. {lintr} is designed to

Hester et al. (2025). Static Code Analysis for R. Journal of Open Source Software, 10(108), 7240. https://doi.org/10.21105/joss.07240. 4

https://doi.org/10.21105/joss.07240

be easy to use and integrate into existing workflows, and can be used as part of an automated
build or continuous integration process. {lintr} also integrates with a number of popular
IDEs and text editors, such as RStudio and Visual Studio Code, making it convenient for users
to run {lintr} checks on their code as they work.

It can also be a useful tool for teaching and learning R. By providing feedback on code style
and potential issues, it can help users learn good coding practices and improve their skills over
time. This can be especially useful for beginners, who may not yet be familiar with all of the
best practices for writing R code.

Finally, {lintr} has had a large and active user community since its birth in 2014 which has
contributed to its rapid development, maintenance, and adoption. At the time of writing,
{lintr} is in a mature and stable state and therefore provides a reliable API that is unlikely
to feature fundamental breaking changes.

Conclusion
{lintr} is a valuable tool for R users to help improve the quality and reliability of their code.
Its static code analysis capabilities, combined with its flexibility and ease of use, make it
relevant and valuable for a wide range of applications.

Licensing and Availability
{lintr} is licensed under the MIT License, with all source code openly developed and stored
on GitHub (https://github.com/r-lib/lintr), along with a corresponding issue tracker for bug
reporting and feature enhancements.

Conflicts of interest
The authors declare no conflict of interest.

Funding
This work was not financially supported by any of the affiliated institutions of the authors.

Acknowledgments
{lintr} would not be possible without the immense work of the R-core team who maintain
the R language and we are deeply indebted to them. We are also grateful to all contributors
to {lintr}.

References
Bacher, E. (2024). Flir: Find and fix lints in R code. https://flir.etiennebacher.com

Basa, R. R., & Nowicki, J. (2024). Box.linters: Linters for ’box’ modules. https://doi.org/10.
32614/CRAN.package.box.linters

Kelkhoff, D. (2024). Roxylint: Lint ’roxygen2’-generated documentation. https://doi.org/10.
32614/CRAN.package.roxylint

McConnell, S. (2004). Code complete. Pearson Education.

Hester et al. (2025). Static Code Analysis for R. Journal of Open Source Software, 10(108), 7240. https://doi.org/10.21105/joss.07240. 5

https://github.com/r-lib/lintr
https://www.r-project.org/contributors.html
https://flir.etiennebacher.com
https://doi.org/10.32614/CRAN.package.box.linters
https://doi.org/10.32614/CRAN.package.box.linters
https://doi.org/10.32614/CRAN.package.roxylint
https://doi.org/10.32614/CRAN.package.roxylint
https://doi.org/10.21105/joss.07240

Müller, K., Walthert, L., & Patil, I. (2024). Styler: Non-invasive pretty printing of r code.
https://doi.org/10.32614/CRAN.package.styler

Onkelinx, T. (2024). Checklist: A thorough and strict set of checks for R packages and source
code. Version 0.4.0. https://doi.org/10.5281/zenodo.4028303

Padgham, M., Marks, K., de Bortoli, D., Csardi, G., Frick, H., Jones, O., & Alexander, H.
(2024). Goodpractice: Advice on r package building. https://doi.org/10.32614/CRAN.
package.goodpractice

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation
for Statistical Computing. https://www.R-project.org/

Rudolph, K. (2024). Box: Write reusable, composable and modular R code. https://doi.org/
10.32614/CRAN.package.box

Tierney, L. (2024). Codetools: Code analysis tools for r. https://doi.org/10.32614/CRAN.
package.codetools

Wickham, H. (2023). The tidyverse style guide. https://style.tidyverse.org/index.html

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund,
G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M.,
Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome
to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/
joss.01686

Wickham, H., Danenberg, P., Csárdi, G., & Eugster, M. (2024). roxygen2: In-line documenta-
tion for R. https://doi.org/10.32614/CRAN.package.roxygen2

Wikipedia contributors. (2024a). Lint (software) — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Lint_(software)&oldid=1260589258

Wikipedia contributors. (2024b). Static program analysis — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Static_program_analysis&oldid=1218663830

Hester et al. (2025). Static Code Analysis for R. Journal of Open Source Software, 10(108), 7240. https://doi.org/10.21105/joss.07240. 6

https://doi.org/10.32614/CRAN.package.styler
https://doi.org/10.5281/zenodo.4028303
https://doi.org/10.32614/CRAN.package.goodpractice
https://doi.org/10.32614/CRAN.package.goodpractice
https://www.R-project.org/
https://doi.org/10.32614/CRAN.package.box
https://doi.org/10.32614/CRAN.package.box
https://doi.org/10.32614/CRAN.package.codetools
https://doi.org/10.32614/CRAN.package.codetools
https://style.tidyverse.org/index.html
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://doi.org/10.32614/CRAN.package.roxygen2
https://en.wikipedia.org/w/index.php?title=Lint_(software)&oldid=1260589258
https://en.wikipedia.org/w/index.php?title=Lint_(software)&oldid=1260589258
https://en.wikipedia.org/w/index.php?title=Static_program_analysis&oldid=1218663830
https://doi.org/10.21105/joss.07240

	Statement of Need
	Features
	Extensibility
	Benefits of using {lintr}
	Conclusion
	Licensing and Availability
	Conflicts of interest
	Funding
	Acknowledgments
	References

