
DeepRiver: A Deep Learning Library for Data Streams

Cedric Kulbach 1*¶, Lucas Cazzonelli 1*, Hoang-Anh Ngo 2*¶, Max
Halford 3, and Saulo Martiello Mastelini 4

1 FZI Research Center for Information Technology, Karlsruhe, Germany 2 AI Institute, University of
Waikato, Hamilton, New Zealand 3 Carbonfact, Paris, France 4 Institute of Mathematics and Computer
Science, University of São Paulo, São Carlos, Brazil ¶ Corresponding author * These authors contributed
equally.

DOI: 10.21105/joss.07226

Software
• Review
• Repository
• Archive

Editor: Taher Chegini
Reviewers:

• @musabgultekin
• @atanikan

Submitted: 04 August 2024
Published: 06 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Machine learning algorithms enhance decision-making efficiency by leveraging available data.
However, as data evolves over time, it becomes crucial to adapt machine learning (ML)
systems incrementally to accommodate new data patterns. This adaptation is achieved through
online learning or continuous ML technologies. Although deep learning technologies have
demonstrated outstanding performance on predefined datasets, their application to online,
streaming, and continuous learning scenarios has been limited.

DeepRiver is a Python package for deep learning on data streams. Built on top of River

(Montiel et al., 2021) and PyTorch (Paszke et al., 2017), it offers a unified API for both
supervised and unsupervised learning. Additionally, it provides a suite of tools for preprocessing
data streams and evaluating deep learning models.

Statement of need
In today’s rapidly evolving landscape, machine learning (ML) algorithms play a pivotal role in
shaping decision-making processes based on available data. These algorithms, while accelerat-
ing analysis, require continuous adaptation to dynamic data structures, as patterns may evolve
rapidly. To address this imperative, adopting online learning and continuous ML technologies
becomes paramount. While deep learning technologies have demonstrated exceptional perfor-
mance on static, predefined datasets, their application to dynamic and continuously evolving
data streams remains underexplored. The absence of widespread integration of deep learning
into online, streaming, and continuous learning scenarios hampers the full potential of these
advanced algorithms in real-time decision-making (Kulbach et al., 2024). The emergence of
the DeepRiver Python package fills a critical void in the field of deep learning on data streams.
Leveraging the capabilities of River (Montiel et al., 2021) and PyTorch (Paszke et al., 2017),
DeepRiver offers a unified API for both supervised and unsupervised learning, providing a
seamless bridge between cutting-edge deep learning techniques and the challenges posed by
dynamic data streams. Moreover, the package equips practitioners with essential tools for
data stream preprocessing and the evaluation of deep learning models in dynamic, real-time
environments. Such functionality has been applied to Streaming Anomaly Detection (Cazzonelli
& Kulbach, 2022). As the demand for effective and efficient adaptation of machine learning
systems to evolving data structures continues to grow, the integration of DeepRiver into the
landscape becomes crucial. This package stands as a valuable asset, unlocking the potential
for deep learning technologies to excel in online, streaming, and continuous learning scenarios.
The need for such advancements is evident in the quest to harness the full power of machine
learning in dynamically changing environments, ensuring our decision-making processes remain
accurate, relevant, and agile in the face of evolving data landscapes.

Kulbach et al. (2025). DeepRiver: A Deep Learning Library for Data Streams. Journal of Open Source Software, 10(105), 7226. https:
//doi.org/10.21105/joss.07226.

1

https://orcid.org/0000-0002-9363-4728
https://orcid.org/0000-0003-2886-1219
https://orcid.org/0000-0002-7583-753X
https://orcid.org/0000-0003-1464-4520
https://orcid.org/0000-0002-0092-3572
https://doi.org/10.21105/joss.07226
https://github.com/openjournals/joss-reviews/issues/7226
https://github.com/online-ml/deep-river
https://doi.org/10.5281/zenodo.14601979
https://cheginit.github.io/
https://orcid.org/0000-0002-5430-6000
https://github.com/musabgultekin
https://github.com/atanikan
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07226
https://doi.org/10.21105/joss.07226


Related Work
Online machine learning involves updating models incrementally as new data arrives, rather
than retraining models from scratch. Several frameworks and libraries have been developed to
support this paradigm:

• scikit-multiflow (Montiel et al., 2018)
– Python-based Library: Inspired by the Java-based MOA framework, designed for

streaming data and online learning in Python.
– Key Features:

∗ Supports algorithms like Hoeffding Trees, online bagging, and boosting.
∗ Includes concept drift detection (e.g., ADWIN, Page-Hinkley) to adapt to

changing data distributions.
∗ Stream generators and evaluators for real-time data simulation and model

assessment.
– Limitations: Focuses mainly on traditional machine learning methods, with limited

support for deep learning architectures.
• creme (Halford et al., 2020)

– Lightweight Online Learning: Specialized in incremental learning where models are
updated per instance, leading to efficient, low-latency model training.

– Provides a unified API with a broad range of online learning algorithms, making it
the go-to library for streaming data analysis in Python.

– Limitations: Primarily supports feature-based models with limited capabilities for
deep neural networks.

In 2020, creme merged with scikit-multiflow to create River, combining the strengths of
both frameworks.

• Massive Online Analysis (MOA) (Bifet et al., 2010)
– Java-based Pioneer: One of the earliest frameworks dedicated to stream mining

and online learning, widely used in academic research.
– Key Features:

∗ Introduces foundational algorithms like Hoeffding Trees, Adaptive Random
Forest (ARF), and several drift detection techniques (e.g., DDM, EDDM).

∗ Excellent scalability for handling high-throughput data streams in real-time.
∗ Strong focus on concept drift adaptation, making it robust in non-stationary

environments.
• capyMOA (CapyMOA Developers, 2024)

– Python Interface for MOA: capyMOA serves as a bridge between the Java-based
MOA framework and Python, allowing users to leverage MOA’s powerful streaming
algorithms within Python workflows.

– Key Features:
∗ Enables access to MOA’s core functionalities (e.g., Hoeffding Trees, Adaptive

Random Forest) from Python.
∗ Facilitates hybrid workflows by integrating MOA’s Java algorithms with

Python’s machine learning libraries.
∗ Useful for Python developers looking to use MOA’s advanced stream mining

capabilities without switching ecosystems.

scikit-multiflow and creme (River) focus on efficient online learning in Python, mainly
for traditional machine learning algorithms. MOA offers extensive tools for stream mining
but lacks deep learning support and Python compatibility. While capyMOA provides Python
accessibility to MOA, capyMOA is limited by the underlying Java infrastructure and lacks a
natural integration with PyTorch’s deep learning ecosystem.

DeepRiver differentiates itself by integrating deep learning capabilities directly into streaming
data workflows, enabling continuous learning for neural network models. This addresses a

Kulbach et al. (2025). DeepRiver: A Deep Learning Library for Data Streams. Journal of Open Source Software, 10(105), 7226. https:
//doi.org/10.21105/joss.07226.

2

https://doi.org/10.21105/joss.07226
https://doi.org/10.21105/joss.07226


critical gap left by existing frameworks, which are predominantly focused on non-deep learning
models.

Features
DeepRiver enables the usage of deep learning models for data streams. This means that
deep learning models need to adapt to changes within the evolving data stream (Bayram et
al., 2022; Lu et al., 2018) e.g. the number of classes might change over time. In addition
to the integration of PyTorch (Paszke et al., 2017) into River (Montiel et al., 2021), this
package offers additional data stream specific functionalities such as class incremental learning
or specific optimizers for data streams.

Compatibility
DeepRiver is built on the unified application programming interface (API) of River(Montiel
et al., 2021) that seamlessly integrates both supervised and unsupervised learning techniques.
Additionally, it incorporates PyTorch’s (Paszke et al., 2017) extensive functionality for deep
learning such as using GPU acceleration and a broad range of architectures. This unified
approach simplifies the development process and facilitates a cohesive workflow for practitioners
working with dynamic data streams. Leveraging the capabilities of the well-established
River(Montiel et al., 2021) library and the powerful PyTorch(Paszke et al., 2017) framework,
DeepRiver combines the strengths of these technologies to deliver a robust and flexible
platform for deep learning on data streams. This foundation ensures reliability, scalability,
and compatibility with state-of-the-art machine learning methodologies, with comprehensive
documentation guiding users through the installation, implementation, and customization
processes. Additionally, a supportive community ensures that all DeepRiver’s users have access
to resources, discussions, and assistance, fostering a collaborative environment for continuous
improvement and knowledge sharing.

Adaptivity
DeepRiver is specifically designed to cater to the requirements of online learning scenarios.
It enables continuous adaptation to evolving data by supporting incremental updates and
learning from new observations in real time, a critical feature for applications where data arrives
sequentially. Moreover, it allows the model to dynamically adjust to changes in the number of
classes over time for classification tasks. It equips practitioners with tools for evaluating the
performance of deep learning models on data streams. This feature is crucial for ensuring the
reliability and effectiveness of models in real-time applications, enabling users to monitor and
fine-tune their models as the data evolves.

Architecture
The DeepRiver library is structured around various types of estimators for anomaly detec-
tion, classification, and regression. In anomaly detection, the base class AnomalyScaler

has derived classes AnomalyMeanScaler, AnomalyMinMaxScaler, and AnomalyStandardScaler.
Additionally, the Autoencoder class, which inherits from DeepEstimator, has a specialized
subclass called ProbabilityWeightedAutoencoder. The RollingAutoencoder class inherits
from RollingDeepEstimator.

For classification, the base class Classifier inherits from DeepEstimator. Derived from
Classifier are specific classes like LogisticRegression and MultiLayerPerceptron. The
RollingClassifier class inherits from both RollingDeepEstimator and Classifier.

In regression, the base class Regressor inherits from DeepEstimator. Specific regression
classes like LinearRegression and MultiLayerPerceptron inherit from Regressor. The

Kulbach et al. (2025). DeepRiver: A Deep Learning Library for Data Streams. Journal of Open Source Software, 10(105), 7226. https:
//doi.org/10.21105/joss.07226.

3

https://online-ml.github.io/deep-river/
https://doi.org/10.21105/joss.07226
https://doi.org/10.21105/joss.07226


MultiTargetRegressor also inherits from DeepEstimator. The RollingRegressor class in-
herits from both RollingDeepEstimator and Regressor.

Figure 1: Architecture of DeepRiver

Overall, the library is organized to provide a flexible and hierarchical framework for different
types of machine learning tasks, with a clear inheritance structure connecting more specific
implementations to their base classes.

Acknowledgements
Hoang-Anh Ngo received an External Study Awards from the AI Institute, University of
Waikato, Hamilton, New Zealand for research on online machine learning under the supervision
of Prof. Albert Bifet.

References
Bayram, F., Ahmed, B. S., & Kassler, A. (2022). From concept drift to model degradation: An

overview on performance-aware drift detectors. Knowledge-Based Systems, 245, 108632.
https://doi.org/10.1016/j.knosys.2022.108632

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis.
Journal of Machine Learning Research, 11(52), 1601–1604. http://jmlr.org/papers/v11/
bifet10a.html

CapyMOA Developers. (2024). CapyMOA — capymoa.org. https://capymoa.org.

Cazzonelli, L., & Kulbach, C. (2022). Detecting anomalies with autoencoders on data streams.
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
258–274. https://doi.org/10.1007/978-3-031-26387-3_16

Halford, M., Bolmier, G., Sourty, R., Vaysse, R., & Zouitine, A. (2020). creme, a Python
library for online machine learning (Version 0.6.1). https://github.com/MaxHalford/creme

Kulbach, C., Cazzonelli, L., Ngo, H.-A., Le-Nguyen, M.-H., & Bifet, A. (2024). A retrospective
of the tutorial on opportunities and challenges of online deep learning. https://doi.org/10.
48550/arXiv.2405.17222

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift:
A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363.
https://doi.org/10.1109/TKDE.2018.2876857

Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A.,
Gomes, H. M., Read, J., Abdessalem, T., & Bifet, A. (2021). River: Machine learning
for streaming data in Python. Journal of Machine Learning Research, 22(110), 1–8.
http://jmlr.org/papers/v22/20-1380.html

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-
output streaming framework. Journal of Machine Learning Research, 19(72), 1–5. http:
//jmlr.org/papers/v19/18-251.html

Kulbach et al. (2025). DeepRiver: A Deep Learning Library for Data Streams. Journal of Open Source Software, 10(105), 7226. https:
//doi.org/10.21105/joss.07226.

4

https://doi.org/10.1016/j.knosys.2022.108632
http://jmlr.org/papers/v11/bifet10a.html
http://jmlr.org/papers/v11/bifet10a.html
https://capymoa.org
https://doi.org/10.1007/978-3-031-26387-3_16
https://github.com/MaxHalford/creme
https://doi.org/10.48550/arXiv.2405.17222
https://doi.org/10.48550/arXiv.2405.17222
https://doi.org/10.1109/TKDE.2018.2876857
http://jmlr.org/papers/v22/20-1380.html
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
https://doi.org/10.21105/joss.07226
https://doi.org/10.21105/joss.07226


Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. https://api.
semanticscholar.org/CorpusID:40027675

Kulbach et al. (2025). DeepRiver: A Deep Learning Library for Data Streams. Journal of Open Source Software, 10(105), 7226. https:
//doi.org/10.21105/joss.07226.

5

https://api.semanticscholar.org/CorpusID:40027675
https://api.semanticscholar.org/CorpusID:40027675
https://doi.org/10.21105/joss.07226
https://doi.org/10.21105/joss.07226

	Summary
	Statement of need
	Related Work
	Features
	Compatibility
	Adaptivity

	Architecture
	Acknowledgements
	References

