
DelaunayTriangulation.jl: A Julia package for
Delaunay triangulations and Voronoi tessellations in
the plane
Daniel J. VandenHeuvel 1¶

1 Department of Mathematics, Imperial College London, UK ¶ Corresponding author
DOI: 10.21105/joss.07174

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @PieterjanRobbe
• @mtsch

Submitted: 27 June 2024
Published: 27 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
DelaunayTriangulation.jl is a feature-rich Julia (Bezanson et al., 2017) package for computing
Delaunay triangulations and Voronoi tessellations. The package, amongst many other features,
supports unconstrained and constrained triangulations, mesh refinement, clipped and centroidal
Voronoi tessellations, power diagrams, and dynamic updates. Thanks to the speed and genericity
of Julia, the package is both performant and robust—making use of AdaptivePredicates.jl
(Churavy & VandenHeuvel, 2024; Shewchuk, 1997) and ExactPredicates.jl (Lairez, 2024) for
computing predicates with robust arithmetic—while still allowing for generic representations of
geometric primitives.

Given a set of points 𝒫, a Delaunay triangulation is a subdivision of the convex hull of 𝒫 into
triangles, with the vertices of the triangles coming from 𝒫, constructed such that no triangle’s
circumcircle contains any point from 𝒫 in its interior (Aurenhammer et al., 2013; Cheng et al.,
2013). A constrained Delaunay triangulation extends this definition to additionally allow for
edges ℰ and piecewise linear boundaries ℬ to be included, ensuring that each segment from ℰ
and ℬ is an edge of some triangle and the boundaries of the domain come from ℬ (Cheng et
al., 2013). For constrained Delaunay triangulations, the triangles must still obey the empty
circumcircle property above, except for allowing a point 𝑝 to be in a triangle 𝑇’s circumcircle if
all line segments from 𝑇’s interior to 𝑝 intersect a segment from ℰ or ℬ (Cheng et al., 2013).
The boundaries ℬ may also be given as parametric curves, in which case they are discretised
until they accurately approximate the curved boundary (Gosselin, 2009). A related geometric
structure is the Voronoi tessellation that partitions the plane into convex polygons for each
𝑝 ∈ 𝒫 such that, for a given polygon, each point in that polygon is closer to the associated
polygon’s point than to any other 𝑞 ∈ 𝒫 (Aurenhammer et al., 2013; Cheng et al., 2013).
Weighted triangulations and power diagrams are generalisations of these structures that allow
for the inclusion of weights associated with the points (Cheng et al., 2013). A more detailed
description of these mathematical details can be found in the package’s documentation.

Statement of Need
Delaunay triangulations and Voronoi tessellations have applications in a myriad of fields.
Delaunay triangulations have been used for point location (Mücke et al., 1999), solving
differential equations (Golias & Dutton, 1997; Ju et al., 2006), path planning (Yan et al.,
2008), etc. Voronoi tessellations are typically useful when there is some notion of influence
associated with a point, and have been applied to problems such as geospatial interpolation
(Bobach, 2009), image processing (Du et al., 1999), and cell biology (Meyer-Hermann, 2008;
Wang et al., 2024).

Several software packages with support for computing Delaunay triangulations and Voronoi

VandenHeuvel. (2024). DelaunayTriangulation.jl: A Julia package for Delaunay triangulations and Voronoi tessellations in the plane. Journal of
Open Source Software, 9(101), 7174. https://doi.org/10.21105/joss.07174.

1

https://orcid.org/0000-0001-6462-0135
https://doi.org/10.21105/joss.07174
https://github.com/openjournals/joss-reviews/issues/7174
https://github.com/JuliaGeometry/DelaunayTriangulation.jl
https://doi.org/10.5281/zenodo.13847646
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/PieterjanRobbe
https://github.com/mtsch
https://creativecommons.org/licenses/by/4.0/
https://github.com/JuliaGeometry/AdaptivePredicates.jl
https://github.com/lairez/ExactPredicates.jl
https://juliageometry.github.io/DelaunayTriangulation.jl/stable/math/overview/
https://doi.org/10.21105/joss.07174

tessellations in two dimensions already exist, such as Triangle in C (Shewchuk, 1996), MATLAB
(The MathWorks Inc., 2024), SciPy (Virtanen et al., 2020) in Python, CGAL (The CGAL
Project, 2024) in C++, and Gmsh (Geuzaine & Remacle, 2009) which has interfaces in several
languages. There are also other Julia packages supporting some of these features, although
none is as developed as DelaunayTriangulation.jl; a more detailed comparison with these
other software packages is given in DelaunayTriangulation.jl’s README. DelaunayTriangu-
lation.jl supports many features not present in most of these other software packages, such
as power diagrams and the triangulation of curve-bounded domains, and benefits from the
high-performance of Julia to efficiently support many operations. Julia’s multiple dispatch
(Bezanson et al., 2017) is leveraged to allow for complete customisation in how a user wishes
to represent geometric primitives such as points and domain boundaries, a useful feature for
allowing users to represent primitives in a way that suits their application without needing to
sacrifice performance. The documentation lists many more features, including the package’s
ability to represent a wide range of domains, even those that are disjoint and with holes.

DelaunayTriangulation.jl has already seen use in several areas. DelaunayTriangulation.jl was
used for mesh generation in VandenHeuvel et al. (2023) and is used for the tricontourf,
triplot, and voronoiplot routines inside Makie.jl (Danisch & Krumbiegel, 2021). The pack-
ages FiniteVolumeMethod.jl (VandenHeuvel, 2024a) and NaturalNeighbours.jl (VandenHeuvel,
2024b) are also built directly on top of DelaunayTriangulation.jl.

Example
We give one example of how the package can be used, focusing on Delaunay triangulations
rather than Voronoi tessellations. Many more examples are given in the documentation,
including tutorials and fully detailed applications such as cell simulations. To fully demonstrate
the utility of the package, we consider a realistic application. We omit code used for plotting
with Makie.jl (Danisch & Krumbiegel, 2021) in the example below for space reasons. The
complete code is available here.

We consider a domain motivated by mean exit time, relating to the time taken for a particle
to reach a certain target, with applications to areas such as diffusive transport (Carr et al.,
2022) and economics (Li, 2019). For example, mean exit time can be used to describe the
expected time for a stock to reach a certain threshold (Li, 2019; Redner, 2001). Denoting the
mean exit time of a particle at a point (𝑥, 𝑦) by 𝑇 (𝑥, 𝑦), one model describing the mean exit
time of a particle exiting Ω with diffusivity 𝐷 starting at (𝑥, 𝑦) is given by (Carr et al., 2022;
Redner, 2001)

𝐷∇2𝑇 (𝑥, 𝑦) = −1 (𝑥, 𝑦) ∈ Ω,
𝑇 (𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ Γ𝑎,
𝑇 (𝑥, 𝑦) = 0 (𝑥, 𝑦) = (𝑥𝑠, 𝑦𝑠),

∇𝑇 (𝑥, 𝑦) ⋅ �̂�(𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ Γ𝑟.

Here, �̂�(𝑥, 𝑦) is the unit normal vector field on Γ𝑟, (𝑥𝑠, 𝑦𝑠) = (0, 0), and the domain Ω with
boundary 𝜕Ω = Γ𝑎 ∪ Γ𝑟 is shown in Figure 1(a). This setup defines a mean exit time where
the particle can only exit through Γ𝑎 or through the sink (𝑥𝑠, 𝑦𝑠), and it gets reflected off of
Γ𝑟.

The code to generate a mesh of the domain is given below. We use CircularArcs to define
the boundary so that curve-bounded refinement can be applied using the algorithm of Gosselin
(2009). The resulting mesh is shown in Figure 1, together with a solution of the mean exit
time problem with 𝐷 = 6.25 × 10−4; FiniteVolumeMethod.jl (VandenHeuvel, 2024a) is used
to solve this problem, and the code for this can be found here.

The outer circle

θ = 5π / 64

cs = θ -> (cos(θ), sin(θ))

p1, q1 = cs(-π / 2 - θ), cs(θ) # Absorbing

VandenHeuvel. (2024). DelaunayTriangulation.jl: A Julia package for Delaunay triangulations and Voronoi tessellations in the plane. Journal of
Open Source Software, 9(101), 7174. https://doi.org/10.21105/joss.07174.

2

https://www.cs.cmu.edu/~quake/triangle.html
https://uk.mathworks.com/help/matlab/computational-geometry.html?s_tid=CRUX_lftnav
https://docs.scipy.org/doc/scipy/tutorial/spatial.html
https://www.cgal.org/
https://gmsh.info/
https://github.com/JuliaGeometry/DelaunayTriangulation.jl?tab=readme-ov-file#similar-packages
https://juliageometry.github.io/DelaunayTriangulation.jl/stable/
https://github.com/MakieOrg/Makie.jl
https://github.com/SciML/FiniteVolumeMethod.jl
https://github.com/DanielVandH/NaturalNeighbours.jl
https://juliageometry.github.io/DelaunayTriangulation.jl/stable/
https://juliageometry.github.io/DelaunayTriangulation.jl/stable/tutorials/overview/
https://juliageometry.github.io/DelaunayTriangulation.jl/stable/applications/overview/
https://github.com/JuliaGeometry/DelaunayTriangulation.jl/blob/paper/paper/paper.jl
https://github.com/JuliaGeometry/DelaunayTriangulation.jl/blob/paper/paper/paper.jl
https://doi.org/10.21105/joss.07174

p2, q2 = q1, cs(π / 2 - θ) # Reflecting

p3, q3 = q2, cs(π + θ) # Absorbing

p4, q4 = q3, p1 # Reflecting

c0 = (0.0, 0.0)

C01 = CircularArc(p1, q1, c0) # first, last, center

C02 = CircularArc(p2, q2, c0)

C03 = CircularArc(p3, q3, c0)

C04 = CircularArc(p4, q4, c0)

C0 = [[C01], [C02], [C03], [C04]]

Inner circles

c1, p5 = (-0.4, -0.4), (-0.65, -0.65)

c2, p6 = (0.4, 0.4), (0.65, 0.65)

C1 = CircularArc(p5, p5, c1, positive=false) # Reflecting

C2 = CircularArc(p6, p6, c2, positive=false) # Reflecting

Triangulate and refine

sink = (0.0, 0.0)

tri = triangulate([sink], boundary_nodes=[C0, [[C1]], [[C2]]])

refine!(tri; max_area=1e-3get_area(tri))

Figure 1: (a) The generated mesh using DelaunayTriangulation.jl for the mean exit time domain. The
red dots along the boundary define the absorbing part of the boundary, Γ𝑎, and the blue dots define the
reflecting part, Γ𝑟. (b) The solution to the mean exit time problem using the mesh from (a) together
with FiniteVolumeMethod.jl (VandenHeuvel, 2024a).

References
Aurenhammer, F., Klein, R., & Lee, D.-T. (2013). Voronoi diagrams and Delaunay triangula-

tions. World Scientific. https://doi.org/10.1142/8685

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bobach, T. (2009). Natural neighbor interpolation - critical assessment and new contributions
[PhD thesis]. Technische Universität Kaiserslautern.

Carr, E., VandenHeuvel, D., Wilson, J., & Simpson, M. (2022). Mean exit time in irregularly-
shaped annular and composite disc domains. Journal of Physics A: Mathematical and
Theoretical, 55, 105002. https://doi.org/10.1088/1751-8121/ac4a1d

VandenHeuvel. (2024). DelaunayTriangulation.jl: A Julia package for Delaunay triangulations and Voronoi tessellations in the plane. Journal of
Open Source Software, 9(101), 7174. https://doi.org/10.21105/joss.07174.

3

https://doi.org/10.1142/8685
https://doi.org/10.1137/141000671
https://doi.org/10.1088/1751-8121/ac4a1d
https://doi.org/10.21105/joss.07174

Cheng, S.-W., Dey, T., & Shewchuk, J. (2013). Delaunay mesh generation. CRC Press.
https://www.routledge.com/Delaunay-Mesh-Generation/Cheng-Dey-Shewchuk/p/book/
9781584887300

Churavy, V., & VandenHeuvel, D. (2024). AdaptivePredicates.jl: Port of Shewchuk’s ro-
bust predicates into Julia. In GitHub repository. https://github.com/JuliaGeometry/
AdaptivePredicates.jl; GitHub.

Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization
for Julia. Journal of Open Source Software, 6, 3349. https://doi.org/10.21105/joss.03349

Du, Q., Faber, V., & Gunzburger, M. (1999). Centroidal Voronoi tessellations: Applications
and algorithms. SIAM Review, 41, 637–676. https://doi.org/10.1137/S0036144599352836

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79, 1309–1331. https://doi.org/10.1002/nme.2579

Golias, N., & Dutton, R. (1997). Delaunay triangulation and 3D adaptive mesh genera-
tion. Finite Elements in Analysis and Design, 25, 331–341. https://doi.org/10.1016/
S0168-874X(96)00054-6

Gosselin, S. (2009). Delaunay refinement mesh generation of curve-bounded domains [PhD
thesis, The University of British Columbia]. https://doi.org/10.14288/1.0067778

Ju, L., Gunzburger, M., & Zhao, W. (2006). Adaptive finite element methods for elliptic
PDEs based on conforming centroidal Voronoi-Delaunay triangulations. SIAM Journal on
Scientific Computing, 28, 2023–2053. https://doi.org/10.1137/050643568

Lairez, P. (2024). ExactPredicates.jl: Fast and exact geometrical predicates in the Euclidean
plane. In GitHub repository. https://github.com/lairez/ExactPredicates.jl; GitHub.

Li, L. (2019). First passage times of diffusion processes and their applications to finance [PhD
thesis]. London School of Economics and Political Science.

Meyer-Hermann, M. (2008). Delaunay-object-dynamics: Cell mechanics with a 3D kinetic and
dynamic weighted Delaunay triangulation. Current Topics in Developmental Biology, 81,
373–399. https://doi.org/10.1016/S0070-2153(07)81013-1

Mücke, E., Saias, I., & Zhu, B. (1999). Fast randomized point location without preprocessing
in two- and three-dimensional Delaunay triangulations. Computational Geometry, 12,
63–83. https://doi.org/10.1016/S0925-7721(98)00035-2

Redner, S. (2001). A guide to first passage processes. Cambridge University Press. https:
//doi.org/10.1017/CBO9780511606014

Shewchuk, J. (1996). Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. In M. C. Lin & D. Manocha (Eds.), Applied computational geometry:
Towards geometric engineering (Vol. 1148, pp. 203–222). Springer-Verlag. https:
//doi.org/10.1007/BFb0014497

Shewchuk, J. (1997). Adaptive precision floating-point arithmetic and fast robust geometric
predicates. Discrete Computational Geometry, 18, 305–363. https://doi.org/10.1007/
PL00009321

The CGAL Project. (2024). CGAL user and reference manual (5.6.1 ed.). CGAL Editorial
Board. https://doc.cgal.org/5.6.1/Manual/packages.html

The MathWorks Inc. (2024). MATLAB version: R2024a. The MathWorks Inc. https:
//www.mathworks.com

VandenHeuvel, D. (2024a). FiniteVolumeMethod.jl (Version v1.1.3). Zenodo. https://doi.
org/10.5281/zenodo.11178646

VandenHeuvel. (2024). DelaunayTriangulation.jl: A Julia package for Delaunay triangulations and Voronoi tessellations in the plane. Journal of
Open Source Software, 9(101), 7174. https://doi.org/10.21105/joss.07174.

4

https://www.routledge.com/Delaunay-Mesh-Generation/Cheng-Dey-Shewchuk/p/book/9781584887300
https://www.routledge.com/Delaunay-Mesh-Generation/Cheng-Dey-Shewchuk/p/book/9781584887300
https://github.com/JuliaGeometry/AdaptivePredicates.jl
https://github.com/JuliaGeometry/AdaptivePredicates.jl
https://doi.org/10.21105/joss.03349
https://doi.org/10.1137/S0036144599352836
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/S0168-874X(96)00054-6
https://doi.org/10.1016/S0168-874X(96)00054-6
https://doi.org/10.14288/1.0067778
https://doi.org/10.1137/050643568
https://github.com/lairez/ExactPredicates.jl
https://doi.org/10.1016/S0070-2153(07)81013-1
https://doi.org/10.1016/S0925-7721(98)00035-2
https://doi.org/10.1017/CBO9780511606014
https://doi.org/10.1017/CBO9780511606014
https://doi.org/10.1007/BFb0014497
https://doi.org/10.1007/BFb0014497
https://doi.org/10.1007/PL00009321
https://doi.org/10.1007/PL00009321
https://doc.cgal.org/5.6.1/Manual/packages.html
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.5281/zenodo.11178646
https://doi.org/10.5281/zenodo.11178646
https://doi.org/10.21105/joss.07174

VandenHeuvel, D. (2024b). NaturalNeighbours.jl (Version v1.3.2). Zenodo. https://doi.org/
10.5281/zenodo.11176971

VandenHeuvel, D., Devlin, B., Buenzli, P., Woodruff, M., & Simpson, M. (2023). New
computational tools and experiments reveal how geometry affects tissue growth in 3D
printed scaffolds. Chemical Engineering Journal, 475, 145776. https://doi.org/10.1016/j.
cej.2023.145776

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wang, X., Jenner, A., Salomone, R., Warne, D., & Drovandi, C. (2024). Calibration of
agent based models for monophasic and biphasic tumour growth using approximate
Bayesian computation. Journal of Mathematical Biology, 88. https://doi.org/10.1007/
s00285-024-02045-4

Yan, H., Wang, H., Chen, Y., & Dai, G. (2008). Path planning based on constrained Delaunay
triangulation. 2008 7th World Congress on Intelligent Control and Automation, 5168–5173.
https://doi.org/10.1109/WCICA.2008.4593771

VandenHeuvel. (2024). DelaunayTriangulation.jl: A Julia package for Delaunay triangulations and Voronoi tessellations in the plane. Journal of
Open Source Software, 9(101), 7174. https://doi.org/10.21105/joss.07174.

5

https://doi.org/10.5281/zenodo.11176971
https://doi.org/10.5281/zenodo.11176971
https://doi.org/10.1016/j.cej.2023.145776
https://doi.org/10.1016/j.cej.2023.145776
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s00285-024-02045-4
https://doi.org/10.1007/s00285-024-02045-4
https://doi.org/10.1109/WCICA.2008.4593771
https://doi.org/10.21105/joss.07174

	Summary
	Statement of Need
	Example
	References

