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Summary
DelaunayTriangulation.jl is a feature-rich Julia (Bezanson et al., 2017) package for computing
Delaunay triangulations and Voronoi tessellations. The package, amongst many other features,
supports unconstrained and constrained triangulations, mesh refinement, clipped and centroidal
Voronoi tessellations, power diagrams, and dynamic updates. Thanks to the speed and genericity
of Julia, the package is both performant and robust—making use of AdaptivePredicates.jl
(Churavy & VandenHeuvel, 2024; Shewchuk, 1997) and ExactPredicates.jl (Lairez, 2024) for
computing predicates with robust arithmetic—while still allowing for generic representations of
geometric primitives.

Given a set of points 𝒫, a Delaunay triangulation is a subdivision of the convex hull of 𝒫 into
triangles, with the vertices of the triangles coming from 𝒫, constructed such that no triangle’s
circumcircle contains any point from 𝒫 in its interior (Aurenhammer et al., 2013; Cheng et al.,
2013). A constrained Delaunay triangulation extends this definition to additionally allow for
edges ℰ and piecewise linear boundaries ℬ to be included, ensuring that each segment from ℰ
and ℬ is an edge of some triangle and the boundaries of the domain come from ℬ (Cheng et
al., 2013). For constrained Delaunay triangulations, the triangles must still obey the empty
circumcircle property above, except for allowing a point 𝑝 to be in a triangle 𝑇’s circumcircle if
all line segments from 𝑇’s interior to 𝑝 intersect a segment from ℰ or ℬ (Cheng et al., 2013).
The boundaries ℬ may also be given as parametric curves, in which case they are discretised
until they accurately approximate the curved boundary (Gosselin, 2009). A related geometric
structure is the Voronoi tessellation that partitions the plane into convex polygons for each
𝑝 ∈ 𝒫 such that, for a given polygon, each point in that polygon is closer to the associated
polygon’s point than to any other 𝑞 ∈ 𝒫 (Aurenhammer et al., 2013; Cheng et al., 2013).
Weighted triangulations and power diagrams are generalisations of these structures that allow
for the inclusion of weights associated with the points (Cheng et al., 2013). A more detailed
description of these mathematical details can be found in the package’s documentation.

Statement of Need
Delaunay triangulations and Voronoi tessellations have applications in a myriad of fields.
Delaunay triangulations have been used for point location (Mücke et al., 1999), solving
differential equations (Golias & Dutton, 1997; Ju et al., 2006), path planning (Yan et al.,
2008), etc. Voronoi tessellations are typically useful when there is some notion of influence
associated with a point, and have been applied to problems such as geospatial interpolation
(Bobach, 2009), image processing (Du et al., 1999), and cell biology (Meyer-Hermann, 2008;
Wang et al., 2024).

Several software packages with support for computing Delaunay triangulations and Voronoi
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tessellations in two dimensions already exist, such as Triangle in C (Shewchuk, 1996), MATLAB
(The MathWorks Inc., 2024), SciPy (Virtanen et al., 2020) in Python, CGAL (The CGAL
Project, 2024) in C++, and Gmsh (Geuzaine & Remacle, 2009) which has interfaces in several
languages. There are also other Julia packages supporting some of these features, although
none is as developed as DelaunayTriangulation.jl; a more detailed comparison with these
other software packages is given in DelaunayTriangulation.jl’s README. DelaunayTriangu-
lation.jl supports many features not present in most of these other software packages, such
as power diagrams and the triangulation of curve-bounded domains, and benefits from the
high-performance of Julia to efficiently support many operations. Julia’s multiple dispatch
(Bezanson et al., 2017) is leveraged to allow for complete customisation in how a user wishes
to represent geometric primitives such as points and domain boundaries, a useful feature for
allowing users to represent primitives in a way that suits their application without needing to
sacrifice performance. The documentation lists many more features, including the package’s
ability to represent a wide range of domains, even those that are disjoint and with holes.

DelaunayTriangulation.jl has already seen use in several areas. DelaunayTriangulation.jl was
used for mesh generation in VandenHeuvel et al. (2023) and is used for the tricontourf,
triplot, and voronoiplot routines inside Makie.jl (Danisch & Krumbiegel, 2021). The pack-
ages FiniteVolumeMethod.jl (VandenHeuvel, 2024a) and NaturalNeighbours.jl (VandenHeuvel,
2024b) are also built directly on top of DelaunayTriangulation.jl.

Example
We give one example of how the package can be used, focusing on Delaunay triangulations
rather than Voronoi tessellations. Many more examples are given in the documentation,
including tutorials and fully detailed applications such as cell simulations. To fully demonstrate
the utility of the package, we consider a realistic application. We omit code used for plotting
with Makie.jl (Danisch & Krumbiegel, 2021) in the example below for space reasons. The
complete code is available here.

We consider a domain motivated by mean exit time, relating to the time taken for a particle
to reach a certain target, with applications to areas such as diffusive transport (Carr et al.,
2022) and economics (Li, 2019). For example, mean exit time can be used to describe the
expected time for a stock to reach a certain threshold (Li, 2019; Redner, 2001). Denoting the
mean exit time of a particle at a point (𝑥, 𝑦) by 𝑇 (𝑥, 𝑦), one model describing the mean exit
time of a particle exiting Ω with diffusivity 𝐷 starting at (𝑥, 𝑦) is given by (Carr et al., 2022;
Redner, 2001)

𝐷∇2𝑇 (𝑥, 𝑦) = −1 (𝑥, 𝑦) ∈ Ω,
𝑇 (𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ Γ𝑎,
𝑇 (𝑥, 𝑦) = 0 (𝑥, 𝑦) = (𝑥𝑠, 𝑦𝑠),

∇𝑇 (𝑥, 𝑦) ⋅ �̂�(𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ Γ𝑟.

Here, �̂�(𝑥, 𝑦) is the unit normal vector field on Γ𝑟, (𝑥𝑠, 𝑦𝑠) = (0, 0), and the domain Ω with
boundary 𝜕Ω = Γ𝑎 ∪ Γ𝑟 is shown in Figure 1(a). This setup defines a mean exit time where
the particle can only exit through Γ𝑎 or through the sink (𝑥𝑠, 𝑦𝑠), and it gets reflected off of
Γ𝑟.

The code to generate a mesh of the domain is given below. We use CircularArcs to define
the boundary so that curve-bounded refinement can be applied using the algorithm of Gosselin
(2009). The resulting mesh is shown in Figure 1, together with a solution of the mean exit
time problem with 𝐷 = 6.25 × 10−4; FiniteVolumeMethod.jl (VandenHeuvel, 2024a) is used
to solve this problem, and the code for this can be found here.

# The outer circle

θ = 5π / 64

cs = θ -> (cos(θ), sin(θ))

p1, q1 = cs(-π / 2 - θ), cs(θ) # Absorbing
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p2, q2 = q1, cs(π / 2 - θ) # Reflecting

p3, q3 = q2, cs(π + θ) # Absorbing

p4, q4 = q3, p1 # Reflecting

c0 = (0.0, 0.0)

C01 = CircularArc(p1, q1, c0) # first, last, center

C02 = CircularArc(p2, q2, c0)

C03 = CircularArc(p3, q3, c0)

C04 = CircularArc(p4, q4, c0)

C0 = [[C01], [C02], [C03], [C04]]

# Inner circles

c1, p5 = (-0.4, -0.4), (-0.65, -0.65)

c2, p6 = (0.4, 0.4), (0.65, 0.65)

C1 = CircularArc(p5, p5, c1, positive=false) # Reflecting

C2 = CircularArc(p6, p6, c2, positive=false) # Reflecting

# Triangulate and refine

sink = (0.0, 0.0)

tri = triangulate([sink], boundary_nodes=[C0, [[C1]], [[C2]]])

refine!(tri; max_area=1e-3get_area(tri))

Figure 1: (a) The generated mesh using DelaunayTriangulation.jl for the mean exit time domain. The
red dots along the boundary define the absorbing part of the boundary, Γ𝑎, and the blue dots define the
reflecting part, Γ𝑟. (b) The solution to the mean exit time problem using the mesh from (a) together
with FiniteVolumeMethod.jl (VandenHeuvel, 2024a).
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