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Summary
Astrochemistry is the study of chemical species in astrophysical objects. By combining
observations and theoretical predictions, the physical conditions of the object can be analysed
as well as its chemical composition and yields, since chemistry is closely coupled to the dynamics
of the environment. Most often, such astrophysical environments are known to be complex and
out of thermodynamic equilibrium. For that reason, the chemical evolution is usually modelled
using a chemical kinetics approach, in which a set of non-linear coupled ordinary differential
equations (ODEs) is solved for a given network of chemical species and reactions. For large
chemical networks, however, this method is computationally slow. Therefore, we developed
MACE, a Machine-learning Approach to Chemistry Emulation, inspired by similar work in the
literature, e.g., Holdship et al. (2021); Grassi et al. (2022); Sulzer & Buck (2023). Their code
is publicly and can be found in their respective papers. However, not all of their code can be
easily adapted or used as such.

MACE is a PyTorch module that offers a trainable surrogate model that is able to emulate
chemical kinetics in only 5% of the computation time of its classical analogue, in the current
implementation. More speed up is expected when using GPUs instead of only CPUs. MACE
provides a machine-learning architecture, consisting of an autoencoder and a trainable ODE,
implemented in PyTorch and torchode (Lienen & Günnemann, 2022). Mathematically, MACE
is given by

n̂(𝑡) = 𝒟(𝑔(ℰ(n, p), 𝑡)), (1)

where n̂(𝑡) represents the predicted chemical abundances at time 𝑡. The symbols n and p
represent the chemical abundances and physical parameters, respectively. The autoencoder
consists of an encoder ℰ, able to map n and p to a latent space representation z, and decoder
𝒟, working the other way around. 𝐺 is a function that describes the evolution of the latent
variables such that z(Δ𝑡) = 𝐺(z,Δ𝑡) = ∫Δ𝑡

0
𝑔(z)d𝑡, where 𝑔 represents the trainable ODE. A

schematic representation of the architecture and flow of the emulator is given in Fig. Figure 1
for a time step Δ𝑡. More details can also be found in Maes et al. (2024). MACE is developed
in the context of circumstellar envelopes (CSEs) of evolved stars, but is flexible to be retrained
on data of other astrophysical environments.
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Figure 1: Schematic representation of the architecture of MACE. The autoencoder is shown in blue, the
time evolution happens in the red part of the emulator. (Adapted from Maes et al., 2024.)

Statement of need
Astrophysical objects or environments entail 3D dynamical processes, as well as chemical
and radiation processes. Thus, in order to properly model such an environment, these three
constituents need to be included in a single simulation. However, modelling each constituents
separately already poses a computational challenge for a modest parameter space, let alone
running a simulation with the three constituents integrated, and on an extended parameter
space. Specifically on the chemistry side, it is generally established that, from a mathematical
point of view, chemical kinetics is a stiff problem. When working with an extended chemical
network (≳ 100 species, connected by ≳ 1000 reactions), the system becomes computationally
very slow to solve. Therefore, it is essential to speed up the solver in an alternative way,
also because the solver is applied multiple times when calculating the chemical evolution of
a certain environment. A fast and accurate chemistry solver would make it computationally
feasible to run it alongside a 3D hydrodynamical and/or radiation model.

Example case
In the context of circumstellar envelopes, we aim to build a comprehensive model, consisting of
3D hydrodynamics, chemistry, and radiation. This is needed since recently, complex structure
(such as spiral, arcs, and bipolarity) are observed in CSEs around evolved, low- and intermediate
mass stars, currently attributed to the presence of (sub-)stellar companions (Decin et al.,
2020; Gottlieb et al., 2022; Nordhaus & Blackman, 2006). In order to study these stars
and their CSEs, taking into account companions, accurate 3-dimensional models are needed.
Currently, only hydrodynamical modelling is done for these systems in 3D (e.g., Maes et al.,
2021; Malfait et al., 2021), though the aim is to include chemistry as well as radiation (Maes
et al., 2022). Starting with integrating chemistry and 3D hydrodynamics, this coupling will
only be computationally feasible when a faster alternative to chemical kinetics exists.

The development of MACE is a first step towards this coupling. Using the MACE architecture,
we are able to accurately reproduce the 1D abundance profiles of 468 chemical species. In
order to verify this, we defined the following error metric:

error =
log10 n − log10 n̂

log10 n
, (2)

which is executed element-wise and subsequently summed over the different chemical species
to come to a global error on a MACE model. More details on this error metric and the accuracy
of the MACE models can be found in Maes et al. (2024). For MACE models with different
sets of hyperparameters, a global error between 10 and 18 was found, averaged over 3000
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test datasets, where a lower number indicates a better model. Figure 2 shows the abundance
profiles of seven chemical species, where the full curves indicate the MACE test of model int4
from Maes et al. (2024), and the dashed curves give the result for the classical model. On
average, the MACE routine provides a speed-up of a factor 26, not taking into account the
potential extra speed-up factor due to efficient vectorisation when coupling MACE with an
SPH hydrodynamical model, or making it compatible with GPU calculations.

Figure 2: Chemical abundance profiles from a test of trained MACE model model int4 (full curves),
compared to the classical model (dashed curves). The error on the MACE model is calculated according
to Equation 2 per chemical species. More details in Maes et al. (2024).
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