
Bodge: Python package for efficient tight-binding
modeling of superconducting nanostructures
Jabir Ali Ouassou 1,2

1 Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway
University of Applied Sciences, NO-5528 Haugesund, Norway 2 Center for Quantum Spintronics,
Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

DOI: 10.21105/joss.07134

Software
• Review
• Repository
• Archive

Editor: Sophie Beck
Reviewers:

• @yw-fang
• @mdavezac

Submitted: 12 July 2024
Published: 09 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Bodge is a Python package for constructing large-scale real-space tight-binding models for
calculations in condensed matter physics. “Large-scale” means that it should remain performant
even for lattices with millions of atoms, and “real-space” means that the model is formulated
in terms of individual lattice sites and not in momentum space, for example.

Although general tight-binding models can be constructed with this package, the main focus is
on the Bogoliubov–De Gennes (“BoDGe”) Hamiltonian used to model superconductivity in the
clean limit (de Gennes, 1966; Zhu, 2016). The package is designed to be easy to use, flexible,
and extensible—and very few lines of code are required to model heterostructures containing,
e.g., conventional and unconventional superconductors, ferromagnets and antiferromagnets,
altermagnetism, and spin-orbit coupling.

In other words: If you want a lattice model for superconducting nanostructures, and want
something that is computationally efficient yet easy to use, Bodge should be a good choice.

Statement of need
In condensed matter physics, a standard methodology for modeling materials is the tight-
binding model. In the context of electronic systems (e.g., metals), the electrons in such a
model typically “live” at one atomic site, but from time to time “hop” over to neighboring
atoms. By including a spin structure as well in this formalism—meaning that we keep track of
what spins each electron has, and whether the spins “flip” during various interactions that
are permitted on this lattice—we can model a wide variety of physical phenomena including
superconductivity and magnetism. Mathematically, this is often expressed in the language of
quantum field theory: We define one operator 𝑐†𝑖𝜎 that “puts” an electron with spin 𝜎 ∈ {↑, ↓}
on an atomic site with some index 𝑖, and another operator 𝑐𝑖𝜎 that “removes” a corresponding
electron. The Hamiltonian operator ℋ of the system is then constructed out of these electron
operators—and this can in turn be used to calculate, e.g., the ground-state energy, electric
currents, superconducting order parameters, and other relevant material properties.

To do anything useful with that Hamiltonian on a computer, however, you typically have to
translate it to a matrix form. This is where Bodge enters the picture:

• It provides an easy-to-use Pythonic interface for constructing the Hamiltonian of a
tight-binding system. Particular focus has been placed on making it easy to describe
systems that include various forms of superconductivity and magnetism, making it a
great choice for modeling, e.g., superconductivity in magnetic heterostructures.

• It scales well to large systems. For efficiency, it uses SciPy sparse matrices internally
(Virtanen et al., 2020), and it constructs large Hamiltonians in 𝒪(𝑁) time and memory

Ouassou. (2024). Bodge: Python package for efficient tight-binding modeling of superconducting nanostructures. Journal of Open Source Software,
9(102), 7134. https://doi.org/10.21105/joss.07134.

1

https://orcid.org/0000-0002-3725-0885
https://doi.org/10.21105/joss.07134
https://github.com/openjournals/joss-reviews/issues/7134
https://github.com/jabirali/bodge/
https://doi.org/10.5281/zenodo.13839641
https://orcid.org/0000-0002-9336-6065
https://github.com/yw-fang
https://github.com/mdavezac
https://creativecommons.org/licenses/by/4.0/
https://github.com/jabirali/bodge
https://doi.org/10.21105/joss.07134

where 𝑁 is the number of sites. According to my benchmarks, the performance is similar
to Kwant (Groth et al., 2014), which is the state of the art for numerical condensed
matter physics. The results can be returned in most NumPy or SciPy matrix formats.

• It is designed to be extensible. For instance, while Bodge currently only implements
square and cubic lattices (via the CubicLattice class), it can be used to construct
Hamiltonians on triangular or hexagonal lattices if you want: you just need to create
your own subclass of the Lattice base class and implement two-to-three short iterators
that describe how to iterate through your lattice. (Specifically: the methods .sites,
.bonds, and .edges need separate implementations per Lattice type.)

• Some convenience methods are provided to help you with the next steps of your
calculations: Extracting the local density of states (LDOS), calculating the free energy,
diagonalizing the Hamiltonian, etc. (Some more advanced algorithms live on the develop
branch on GitHub, but have not yet been assimilated into the official package.)

• The code itself follows modern software development practices: Full test coverage with
continuous integration (via pytest), fast runtime type checking (via beartype), and
PEP-8 compliance (via black).

There are two main alternatives that arguably fill a similar niche to Bodge: Kwant (Groth et
al., 2014) and Pybinding (Moldovan et al., 2020). Compared to these packages, the main
benefit of Bodge is the focus on the BdG Hamiltonian in particular. For instance, using Kwant,
it is up to the user to declare that each lattice site has four degrees of freedom (spin-up
electrons, spin-down electrons, spin-up holes, and spin-down holes), and to ensure that you
construct a Hamiltonian with the correct particle-hole symmetries. Bodge, however, assumes
that these are the only relevant degrees of freedom, and enforces the relevant symmetries
by default. In practice, this means that Kwant can be used to study a broader variety of
physical systems, whereas Bodge can provide a friendlier syntax for users who work specifically
on superconducting systems. Both packages support both NumPy arrays and SciPy sparse
matrices as output formats, and both provide similar performance in the limit of large systems.

Sparse matrices, including, e.g., the Compressed Sparse Row (CSR) format used below, have
the advantage that they only store the non-zero elements of a matrix. For a typical tight-
binding model with nearest-neighbor hopping terms, the Hamiltonian matrix that describes a
lattice with 𝑁 atoms has 𝒪(𝑁2) elements where only 𝒪(𝑁) are non-zero. Thus, algorithms
that leverage sparse matrices often result in at least an 𝒪(𝑁) reduction in CPU and RAM
requirements, which becomes highly significant for large systems. Even larger performance
enhancements can be obtained in some limits (Nagai, 2020; Weiße et al., 2006), although it
depends on your system whether the required approximations provide a good trade-off between
accuracy and speed. However, dense matrices (i.e., NumPy arrays) allow for simpler solution
algorithms based on, e.g., full matrix diagonalization, and can become faster than sparse matrix
algorithms for small systems or when leveraging GPU acceleration. Notably, the computational
complexity of sparse matrix algorithms often come with a large constant prefactor (e.g., the
order of a Chebyshev matrix expansion), which can actually result in worse performance for
smaller systems. For this reason, both sparse and dense matrices are fully supported by Bodge,
allowing the user to pick the most suitable matrix format for the task at hand.

Examples and workflows
Introductory examples of how to use Bodge are provided in the official documentation. Examples
of research problems that have been studied using Bodge include superconductor/altermagnet
heterostructures (Ouassou et al., 2023) and RKKY interactions in unconventional superconduc-
tors (Ouassou et al., 2024b, 2024a). These papers also describe some sparse matrix algorithms
that can be used together with Bodge, including Chebyshev expansion of the Fermi matrix
(Benfenati, 2022; Goedecker & Colombo, 1994; Ouassou et al., 2023; Weiße et al., 2006) and
a quick way to calculate the local density of states (Nagai et al., 2017; Ouassou et al., 2024b).

For a simple example of how this package can be used, consider a 64𝑎 × 64𝑎 square lattice.

Ouassou. (2024). Bodge: Python package for efficient tight-binding modeling of superconducting nanostructures. Journal of Open Source Software,
9(102), 7134. https://doi.org/10.21105/joss.07134.

2

https://jabirali.github.io/bodge/tutorial.html#numerical-details
https://kwant-project.org/
https://jabirali.github.io/bodge/
https://doi.org/10.21105/joss.07134

Let’s assume that the whole system is a metal with chemical potential 𝜇 = 1.5𝑡, where
𝑡 = 1 is the hopping amplitude. Moreover, let’s assume that half the system (𝑥 < 32𝑎)
is a conventional 𝑠-wave superconductor with an order parameter Δ𝑠 = 0.1𝑡, whereas the
other half is a ferromagnet with exchange field M = 𝑀𝑧e𝑧. To describe the Hamiltonian
corresponding to this system we can use the following code:

from bodge import *

Tight-binding parameters

t = 1

μ = 1.5 * t

Δs = 0.1 * t

Mz = 0.5 * Δs

Construct the Hamiltonian

lattice = CubicLattice((64, 64, 1))

system = Hamiltonian(lattice)

with system as (H, Δ):

for i, j in lattice.bonds():

H[i, j] = -t * σ0

for i in lattice.sites():

if i[0] < 32:

H[i, i] = -μ * σ0

Δ[i, i] = -Δs * jσ2

else:

H[i, i] = -μ * σ0 - Mz * σ3

Note the use of a context manager (with-block) to provide an intuitive array syntax for
accessing the relevant parts of the Hamiltonian matrix, while abstracting away the underlying
sparse matrix details. Afterwards, there are many different ways to use the resulting object.

Some physical observables can be directly calculated using the methods provided in Bodge.
For instance, one can use the method system.ldos(site, energies) to directly calculate
the local density of states at a given lattice site, which can then be used to check for
spectral features such as a superconducting gap or a zero-energy peak. There is also a
method system.free_energy(temperature) which calculates the free energy of the system.
By varying parameters in the Hamiltonian (e.g., the orientation of a magnetic field) and then
minimizing this free energy, one can determine the ground state of the system, for example.

Most calculations of interest, however, requires that the user implements some code themselves.
There are then two main approaches one can take. The classic approach is matrix diagonalization
which uses dense matrices internally. Bodge provides the method diagonalize for this purpose:

E, v = system.diagonalize()

The results above contain the positive energies 𝐸𝑛 and corresponding state vectors v𝑛 which
satisfy the eigenvalue equation Hv𝑛 = 𝐸𝑛v𝑛. (Only positive eigenvalues are returned due to
the “Nambu doubling” of degrees of freedom in superconducting systems.) Once the eigenvalues
and eigenvectors have been obtained, the user can themselves calculate physical properties of
interest from these using equations from standard textbooks on the “Bogoliubov–de Gennes”
approach to modeling superconductivity (Zhu, 2016). It is a future goal to incorporate
more calculation methods of this kind into the Bodge package itself. Support for matrix
diagonalization using GPUs via the CuPy package is also under development.

Examples of physical observables that can be calculated from the eigenvalues and eigenvectors
include the superconducting order parameter, electric currents, and spin currents. These can
in turn be used to calculate even more material properties. For instance, the critical current

Ouassou. (2024). Bodge: Python package for efficient tight-binding modeling of superconducting nanostructures. Journal of Open Source Software,
9(102), 7134. https://doi.org/10.21105/joss.07134.

3

https://doi.org/10.21105/joss.07134

of a Josephson junction is defined as the largest electric current that can flow through it for
any phase difference, and the critical temperature of a bulk superconductor is defined as the
largest temperature at which the superconducting order parameter remains non-zero. These
observables can thus be determined via numerical optimization of the electric current and
superconducting order parameter, respectively. For instance, the critical temperature can be
efficiently determined using a bisection method (Ouassou et al., 2016; Ouassou, 2019).

A modern alternative to matrix diagonalization is a series of algorithms based on Chebyshev
expansion of the Hamiltonian matrix (Benfenati, 2022; Covaci et al., 2010; Nagai, 2020;
Ouassou et al., 2023; Weiße et al., 2006). These algorithms take advantage of the extreme
sparsity of the Hamiltonian matrix, and thus typically provide a significant performance benefit
in the limit of very large lattices. One of the main design goals behind Bodge has been to
make it trivial to construct sparse representations of the Hamiltonian matrix for this purpose,
and it is therefore straight-forward to export the result as, e.g., a CSR sparse matrix:

H = system.matrix(format="csr")

The user can then easily use the resulting matrix H to formulate their own sparse matrix
algorithms of this kind. For instance, arbitrary matrix functions can typically be evaluated
as a Chebyshev expansion 𝑓(H) = ∑𝑀−1

𝑚=0 𝑓𝑚𝑇𝑚(H), where the Chebyshev moments 𝑓𝑚 of
the function 𝑓(⋅) are computationally inexpensive to obtain, whereas the Chebyshev matrix
polynomials 𝑇𝑚(⋅) can be obtained via the recursion relation (Weiße et al., 2006)

𝑇𝑚(H) = {H𝑚 if 0 ≤ 𝑚 ≤ 1,
2H𝑇𝑚−1(H) − 𝑇𝑚−2(H) if 𝑚 > 1.

The trick is then to find a suitable matrix function 𝑓(H) to study your physical system. Using
the “Kernel Polynomial Method” (Weiße et al., 2006), the order 𝑀 of such a Chebyshev
expansion can be decreased without serious truncation errors.

Acknowledgements
I acknowledge very helpful discussions with my PostDoc supervisor Prof. Jacob Linder when
learning the BdG formalism, without which the Bodge package would not exist today. I also
thank Morten Amundsen, Henning G. Hugdal, and Sol H. Jacobsen for useful discussions on
tight-binding modeling in general. Finally, I want to thank Mayeul d’Avezac and Yue-Wen
Fang for their constructive input during the referee process, which has improved the Bodge
software package and its documentation.

This work was supported by the Research Council of Norway through Grant No. 323766 and its
Centres of Excellence funding scheme Grant No. 262633 “QuSpin.” During the development of
this package, some numerical calculations were performed on resources provided by Sigma2—the
National Infrastructure for High Performance Computing and Data Storage in Norway, Project
No. NN9577K. The work presented in this paper has also benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3), which is financially supported by
the Research Council of Norway under contract 270053.

References
Benfenati, A. L. (2022). Numerical solutions to non-linear inhomogeneous problems in supercon-

ductivity [PhD thesis, KTH]. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-311403

Covaci, L., Peeters, F. M., & Berciu, M. (2010). Efficient numerical approach to inhomogeneous
superconductivity: The Chebyshev–Bogoliubov–de Gennes method. Physical Review Letters,
105, 167006. https://doi.org/10.1103/PhysRevLett.105.167006

Ouassou. (2024). Bodge: Python package for efficient tight-binding modeling of superconducting nanostructures. Journal of Open Source Software,
9(102), 7134. https://doi.org/10.21105/joss.07134.

4

https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-311403
https://doi.org/10.1103/PhysRevLett.105.167006
https://doi.org/10.21105/joss.07134

de Gennes, P. G. (1966). Superconductivity of metals and alloys. https://doi.org/10.1201/
9780429497032

Goedecker, S., & Colombo, L. (1994). Efficient linear scaling algorithm for tight-binding
molecular dynamics. Physical Review Letters, 73, 122–125. https://doi.org/10.1103/
PhysRevLett.73.122

Groth, C. W., Wimmer, M., Akhmerov, A. R., & Waintal, X. (2014). Kwant: A software
package for quantum transport. New Journal of Physics, 16, 063065. https://doi.org/10.
1088/1367-2630/16/6/063065

Moldovan, Dean, Anđelković, Miša, & Peeters, F. (2020). Pybinding: A python package for
tight-binding calculations. Zenodo. https://doi.org/10.5281/Zenodo.4010216

Nagai, Y. (2020). N-independent localized Krylov–Bogoliubov-de Gennes method: Ultra-fast
numerical approach to large-scale inhomogeneous superconductors. Journal of the Physical
Society of Japan, 89, 074703. https://doi.org/10.7566/JPSJ.89.074703

Nagai, Y., Shinohara, Y., Futamura, Y., & Sakurai, T. (2017). Reduced-shifted conjugate-
gradient method for a Green’s function: Efficient numerical approach in a nano-structured
superconductor. Journal of the Physical Society of Japan, 86, 014708. https://doi.org/10.
7566/JPSJ.86.014708

Ouassou, J. A. (2019). Manipulating superconductivity in magnetic nanostructures in and out
of equilibrium [PhD thesis, NTNU]. https://pvv.org/~jabirali/academic/phd.pdf

Ouassou, J. A., Bernardo, A. D., Robinson, J. W. A., & Linder, J. (2016). Electric control of
superconducting transition through a spin-orbit coupled interface. Scientific Reports, 6,
29312. https://doi.org/10.1038/SRep29312

Ouassou, J. A., Brataas, A., & Linder, J. (2023). DC Josephson effect in altermagnets.
Physical Review Letters, 131, 076003. https://doi.org/10.1103/PhysRevLett.131.076003

Ouassou, J. A., Yokoyama, T., & Linder, J. (2024a). Dzyaloshinskii–Moriya spin–spin interac-
tion from mixed-parity superconductivity. https://doi.org/10.48550/arXiv.2407.07144

Ouassou, J. A., Yokoyama, T., & Linder, J. (2024b). RKKY interaction in triplet supercon-
ductors: Dzyaloshinskii–Moriya-type interaction mediated by spin-polarized Cooper pairs.
Physical Review B, 109, 174506. https://doi.org/10.1103/PhysRevB.109.174506

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/S41592-019-0686-2

Weiße, A., Wellein, G., Alvermann, A., & Fehske, H. (2006). The kernel polynomial method.
Reviews of Modern Physics, 78, 275–306. https://doi.org/10.1103/RevModPhys.78.275

Zhu, J.-X. (2016). Bogoliubov–de Gennes method and its applications. https://doi.org/10.
1007/978-3-319-31314-6

Ouassou. (2024). Bodge: Python package for efficient tight-binding modeling of superconducting nanostructures. Journal of Open Source Software,
9(102), 7134. https://doi.org/10.21105/joss.07134.

5

https://doi.org/10.1201/9780429497032
https://doi.org/10.1201/9780429497032
https://doi.org/10.1103/PhysRevLett.73.122
https://doi.org/10.1103/PhysRevLett.73.122
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.5281/Zenodo.4010216
https://doi.org/10.7566/JPSJ.89.074703
https://doi.org/10.7566/JPSJ.86.014708
https://doi.org/10.7566/JPSJ.86.014708
https://pvv.org/~jabirali/academic/phd.pdf
https://doi.org/10.1038/SRep29312
https://doi.org/10.1103/PhysRevLett.131.076003
https://doi.org/10.48550/arXiv.2407.07144
https://doi.org/10.1103/PhysRevB.109.174506
https://doi.org/10.1038/S41592-019-0686-2
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1007/978-3-319-31314-6
https://doi.org/10.1007/978-3-319-31314-6
https://doi.org/10.21105/joss.07134

	Summary
	Statement of need
	Examples and workflows
	Acknowledgements
	References

