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Summary

Simulating multi-physics phenomena for real-world applications states various challenges in
scientific computing. Each individual physical domain has behavior that is often described
through a distinct set of partial-differential equations that needs to be solved in that domain.
Their interaction is then achieved through bidirectional exchange of suitable coupling data
between all involved domains. Partitioned coupling tackles multi-physics simulations by glueing
together separate models, typically implemented in separate software environments. To facilitate
such partitioned multi-physics simulations effectively, so-called coupling libraries offer commonly
required functionality. We focus in particular on coupling through the open-source library
preCICE (Chourdakis et al., 2022), which offers functionality for data communication, data
mapping, coupling schemes, and more. In the most basic setup, at least two executables
call preCICE to perform a coupled simulation. As additional software components, so-called
adapters bridge the gap between the preCICE API and the software environments used by
the coupled models. Creating and using this overall setup for early development purposes
is not only cumbersome, but also very inefficient. The artificial solver testing environment
(ASTE) allows for replacing models coupled via preCICE with artificial ones, potentially in
parallel distributed across multiple ranks on distributed memory. This helps in the development
of preCICE, adapters, or simulation setups by reducing the necessary software components,
simplifying execution workflows, and reducing runtime of the case. In addition, ASTE provides
performance and accuracy metrics of the configured simulation setup.

Statement of need

Figure 1 illustrates the software stack required for a coupled simulation setup using FEniCS
and OpenFOAM as examples, and compares it to a simulation setup using ASTE. Besides
preCICE itself, core ingredients for practical applications are preCICE API language bindings,
preCICE adapters, the simulation frameworks, and their dependencies. ASTE, on the other
hand, replaces coupled models and only requires a reduced set of dependencies. It abstracts
the computational complexity of the models away by extracting the relevant information from
VTK files instead and passing extracted data to preCICE, potentially in parallel on distributed
memory. While the VTK files may stem from actual simulations, ASTE can also generate
artificial VTK files with prescribed coupling data. On top of that, the entire tool chain of
ASTE enables easily altering the simulation setup through different mesh partitionings, and
specifically for the configuration of data mappings in preCICE, ASTE can evaluate additional
accuracy metrics of used mappings.
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Figure 1: Dependency graph between models, applications, and libraries for a coupled simulation with
FEniCS and OpenFOAM compared to a dependency graph using ASTE.

From an application standpoint, ASTE provides a reproducible environment which enables
sharing and rerunning of scenarios, regardless of the availability of involved software components.
This capability is particularly useful for debugging issues reported by users of preCICE, who
can share their scenarios (e.g., through the preCICE forum) for developers to analyze, even
when the involved software is unavailable due to licensing terms or being closed-source.

A further crucial argument for emulating models with ASTE is computational efficiency. For
coupled simulations, the main computational load is typically carried by the models instead of
the coupling library. Hence, running the original models repeatedly for development purposes
of preCICE or adapter components is both time-consuming and inefficient. This inefficiency
not only complicates software development, but also applies to parameter tuning for real-world
applications, where the execution of involved models might become prohibitively expensive
already due to the problem size.

In this regard, ASTE provides a lightweight and valuable tool. It enables the efficient develop-
ment of preCICE by testing new features on real-world applications in an artificial solver-like
setup, e.g., for developing new communication algorithms (Lindner, 2019; Totounferoush et
al., 2021) or to develop new mapping methods, e.g., (Ariguib, 2022; Chourdakis et al., 2022;
Martin, 2022; Schneider et al., 2023). In fact, testing and developing preCICE was the use case
behind the first prototype of ASTE, which was developed as part of Lindner (2019). Beyond
the development in preCICE, ASTE also fosters the development of new adapter codes to
be coupled via preCICE, as it aids in debugging and enhances the transparency of data flow.
Moreover, combining preCICE’s performance instrumentation with the ASTE's flexibility and
insight, it enables finding appropriate settings for specific scenarios, as effectively demonstrated
in the large-scale example in Lindner et al. (2020).

Although coupling libraries like MUI offer their own testing and benchmarking infrastructure,
e.g., MUI's testing framework, many tools do not provide such testing environments at all.
Instead, evaluating, testing and benchmarking of these libraries relies on hard-coded solutions
tailored to individual test setups, e.g., the benchmarking performed by Valcke et al. (2022).
ASTE covers a comprehensive, flexible and resuable toolchain for development, testing, and
parameter tuning.
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Functionality & Use

The central interface of ASTE is given through a VTK mesh file, which contains information
about the geometric shape of the model we emulate. The VTK files can be generated from
mesh generation tools (e.g., GMSH (Geuzaine & Remacle, 2009)), included Python scripts,
other simulation software, or directly reused from a completed preCICE simulation. Given a
VTK file, ASTE offers different algorithms to repartition them (e.g., through METIS (Karypis
& Kumar, 2009)) for parallel runs. Moreover, ASTE can generate artificial data using pre- or
user-defined functions on the mesh and store them in the VTK file format. The core module
of ASTE then reads the VTK file and passes the data to preCICE, potentially in every time
step of the coupled simulation. Once the simulation is finished, the generated data is stored
in another VTK file and can be compared against the original artificial data. Performance
metrics are accessible through the preCICE performance framework.

While the core module of ASTE is written in C++, the pre- and postprocessing scripts are
implemented in Python. The core module relies on VTK (Schroeder et al., 2006), Boost, and
MPI for parallel execution. It provides a command line interface for simple simulations and
can be configured in JSON (Lohmann, 2023) for more complex scenarios.

ASTE is hosted on GitHub and releases are published using GitHub releases. The documentation
is part of the ASTE repository and rendered on the preCICE website. In addition, a tutorial
and ready-to-use examples are available. Building is handled via CMake and, as part of the
preCICE distribution (Chen et al., 2024), ASTE can be used through a Vagrant box.
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