The Journal of Open Source Software

DOI: 10.21105/joss.07127

Software
= Review @@
= Repository @
= Archive &7

Editor: Patrick Diehl &
Reviewers:

= @asalmgren
= @hverhelst

Submitted: 01 August 2024
Published: 14 November 2024

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

ASTE: An artificial solver testing environment for
partitioned coupling with preCICE

David Schneider 2. Frédéric Simonis ®!, and

Benjamin Uekermann

19, Muhammed Kiirsat Yurt
1

1 Institute for Parallel and Distributed Systems, University of Stuttgart, Germany 2 TUM School of
Engineering and Design, Technical University of Munich, Germany § Corresponding author

Summary

Simulating multi-physics phenomena for real-world applications states various challenges in
scientific computing. Each individual physical domain has behavior that is often described
through a distinct set of partial-differential equations that needs to be solved in that domain.
Their interaction is then achieved through bidirectional exchange of suitable coupling data
between all involved domains. Partitioned coupling tackles multi-physics simulations by glueing
together separate models, typically implemented in separate software environments. To facilitate
such partitioned multi-physics simulations effectively, so-called coupling libraries offer commonly
required functionality. We focus in particular on coupling through the open-source library
preCICE (Chourdakis et al., 2022), which offers functionality for data communication, data
mapping, coupling schemes, and more. In the most basic setup, at least two executables
call preCICE to perform a coupled simulation. As additional software components, so-called
adapters bridge the gap between the preCICE API and the software environments used by
the coupled models. Creating and using this overall setup for early development purposes
is not only cumbersome, but also very inefficient. The artificial solver testing environment
(ASTE) allows for replacing models coupled via preCICE with artificial ones, potentially in
parallel distributed across multiple ranks on distributed memory. This helps in the development
of preCICE, adapters, or simulation setups by reducing the necessary software components,
simplifying execution workflows, and reducing runtime of the case. In addition, ASTE provides
performance and accuracy metrics of the configured simulation setup.

Statement of need

Figure 1 illustrates the software stack required for a coupled simulation setup using FEniCS
and OpenFOAM as examples, and compares it to a simulation setup using ASTE. Besides
preCICE itself, core ingredients for practical applications are preCICE API language bindings,
preCICE adapters, the simulation frameworks, and their dependencies. ASTE, on the other
hand, replaces coupled models and only requires a reduced set of dependencies. It abstracts
the computational complexity of the models away by extracting the relevant information from
VTK files instead and passing extracted data to preCICE, potentially in parallel on distributed
memory. While the VTK files may stem from actual simulations, ASTE can also generate
artificial VTK files with prescribed coupling data. On top of that, the entire tool chain of
ASTE enables easily altering the simulation setup through different mesh partitionings, and
specifically for the configuration of data mappings in preCICE, ASTE can evaluate additional
accuracy metrics of used mappings.

Schneider et al. (2024). ASTE: An artificial solver testing environment for partitioned coupling with preCICE. Journal of Open Source Software, 1
9(103), 7127. https://doi.org/10.21105/joss.07127.

https://orcid.org/0000-0002-3487-9688
https://orcid.org/0000-0001-6497-3184
https://orcid.org/0000-0003-3390-157X
https://orcid.org/0000-0002-1314-9969
https://doi.org/10.21105/joss.07127
https://github.com/openjournals/joss-reviews/issues/7127
https://github.com/precice/aste
https://doi.org/10.18419/darus-4562
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/asalmgren
https://github.com/hverhelst
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07127

The Journal of Open Source Software

[Coupled simulation] [Coupled simulation 1
| e
| FEnCSModel 1 | [OpenFOAM Model2 | | Model N ‘] | Artificial Model 1,....N |
‘ preCICE library ‘ ‘ preCICE library ‘ ‘ preCICE library ‘ ‘ preCICE library ‘
preCICE python / OpenFOAM- \ / preCICE API \ / ASTE \
bindings preCICE adapter bindings
" FEnics- ’ \ " preCICE | ()
preCICE adapter [DlpEmIFeY] ‘ adapter ‘ ‘ VTK ‘

I I oy

‘ FEniCS ‘ OpenFOAM ‘ solver

| J | dependencies | framework

(FEniCS) (framework)
dependencies dependencies

Figure 1: Dependency graph between models, applications, and libraries for a coupled simulation with
FEniCS and OpenFOAM compared to a dependency graph using ASTE.

From an application standpoint, ASTE provides a reproducible environment which enables
sharing and rerunning of scenarios, regardless of the availability of involved software components.
This capability is particularly useful for debugging issues reported by users of preCICE, who
can share their scenarios (e.g., through the preCICE forum) for developers to analyze, even
when the involved software is unavailable due to licensing terms or being closed-source.

A further crucial argument for emulating models with ASTE is computational efficiency. For
coupled simulations, the main computational load is typically carried by the models instead of
the coupling library. Hence, running the original models repeatedly for development purposes
of preCICE or adapter components is both time-consuming and inefficient. This inefficiency
not only complicates software development, but also applies to parameter tuning for real-world
applications, where the execution of involved models might become prohibitively expensive
already due to the problem size.

In this regard, ASTE provides a lightweight and valuable tool. It enables the efficient develop-
ment of preCICE by testing new features on real-world applications in an artificial solver-like
setup, e.g., for developing new communication algorithms (Lindner, 2019; Totounferoush et
al., 2021) or to develop new mapping methods, e.g., (Ariguib, 2022; Chourdakis et al., 2022;
Martin, 2022; Schneider et al., 2023). In fact, testing and developing preCICE was the use case
behind the first prototype of ASTE, which was developed as part of Lindner (2019). Beyond
the development in preCICE, ASTE also fosters the development of new adapter codes to
be coupled via preCICE, as it aids in debugging and enhances the transparency of data flow.
Moreover, combining preCICE’s performance instrumentation with the ASTE's flexibility and
insight, it enables finding appropriate settings for specific scenarios, as effectively demonstrated
in the large-scale example in Lindner et al. (2020).

Although coupling libraries like MUI offer their own testing and benchmarking infrastructure,
e.g., MUI's testing framework, many tools do not provide such testing environments at all.
Instead, evaluating, testing and benchmarking of these libraries relies on hard-coded solutions
tailored to individual test setups, e.g., the benchmarking performed by Valcke et al. (2022).
ASTE covers a comprehensive, flexible and resuable toolchain for development, testing, and
parameter tuning.

Schneider et al. (2024). ASTE: An artificial solver testing environment for partitioned coupling with preCICE. Journal of Open Source Software, 2
9(103), 7127. https://doi.org/10.21105/joss.07127.

https://precice.discourse.group/
https://github.com/MxUI/MUI-Testing
https://doi.org/10.21105/joss.07127

The Journal of Open Source Software

Functionality & Use

The central interface of ASTE is given through a VTK mesh file, which contains information
about the geometric shape of the model we emulate. The VTK files can be generated from
mesh generation tools (e.g., GMSH (Geuzaine & Remacle, 2009)), included Python scripts,
other simulation software, or directly reused from a completed preCICE simulation. Given a
VTK file, ASTE offers different algorithms to repartition them (e.g., through METIS (Karypis
& Kumar, 2009)) for parallel runs. Moreover, ASTE can generate artificial data using pre- or
user-defined functions on the mesh and store them in the VTK file format. The core module
of ASTE then reads the VTK file and passes the data to preCICE, potentially in every time
step of the coupled simulation. Once the simulation is finished, the generated data is stored
in another VTK file and can be compared against the original artificial data. Performance
metrics are accessible through the preCICE performance framework.

While the core module of ASTE is written in C++, the pre- and postprocessing scripts are
implemented in Python. The core module relies on VTK (Schroeder et al., 2006), Boost, and
MPI for parallel execution. It provides a command line interface for simple simulations and
can be configured in JSON (Lohmann, 2023) for more complex scenarios.

ASTE is hosted on GitHub and releases are published using GitHub releases. The documentation
is part of the ASTE repository and rendered on the preCICE website. In addition, a tutorial
and ready-to-use examples are available. Building is handled via CMake and, as part of the
preCICE distribution (Chen et al., 2024), ASTE can be used through a Vagrant box.

Acknowledgements

The authors are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under project numbers 515015468 and 528693298, and under Germany's Excellence
Strategy - EXC 2075 — 390740016. We acknowledge the support of the Stuttgart Center for
Simulation Science (SimTech).

References

Ariguib, B. (2022). Second-order projection-based mapping methods for coupled multi-
physics simulations [Bachelor's thesis]. University of Stuttgart. https://doi.org/10.18419/
opus-12128

Chen, J., Chourdakis, G., Desai, I., Homs-Pons, C., Rodenberg, B., Schneider, D., Simonis,
F., Uekermann, B., Davis, K., Jaust, A., Kelm, M., Kotarsky, N., Kschidock, H., Mishra,
D., MihlhduBer, M., Schrader, T. P., Schulte, M., Seitz, V., Signorelli, J., .. Zonta, E.
(2024). preCICE distribution version v2404.0 (Version V1) [Data set]. DaRUS. https:
//doi.org/10.18419/darus-4167

Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., Simonis, F., Uekermann, B., Abrams,
G., Bungartz, H., Cheung Yau, L., Desai, |., Eder, K., Hertrich, R., Lindner, F., Rusch, A.,
Sashko, D., Schneider, D., Totounferoush, A., Volland, D., Vollmer, P., & Koseomur, O.
(2022). PreCICE v2: A sustainable and user-friendly coupling library [version 2; peer review:
2 approved]. Open Research Europe, 2(51). https://doi.org/10.12688/openreseurope.
14445.2

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with
built-in pre-and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309-1331. https://doi.org/10.1002/nme.2579

Karypis, G., & Kumar, V. (2009). MeTis: Unstructured graph partitioning and sparse
matrix ordering system, version 4.0. University of Minnesota, Minneapolis, MN; http:

Schneider et al. (2024). ASTE: An artificial solver testing environment for partitioned coupling with preCICE. Journal of Open Source Software, 3
9(103), 7127. https://doi.org/10.21105/joss.07127.

https://github.com/precice/aste/tree/develop/tools/mesh-generators
https://precice.org/configuration-export.html
https://precice.org/tooling-performance-analysis.html
https://boost.org/
https://github.com/precice/aste
https://github.com/precice/aste/releases
https://github.com/precice/aste/blob/develop/docs/README.md
https://precice.org/tooling-aste.html
https://precice.org/tutorials-aste-turbine.html
https://github.com/precice/aste/tree/develop/examples
https://cmake.org/
https://github.com/precice/vm
https://doi.org/10.18419/opus-12128
https://doi.org/10.18419/opus-12128
https://doi.org/10.18419/darus-4167
https://doi.org/10.18419/darus-4167
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.1002/nme.2579
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
https://doi.org/10.21105/joss.07127

The Journal of Open Source Software

//www.cs.umn.edu/~metis.

Lindner, F. (2019). Data transfer in partitioned multi-physics simulations: Interpolation & com-
munication [Dissertation, University of Stuttgart]. https://doi.org/10.18419/opus-10581

Lindner, F., Totounferoush, A., Mehl, M., Uekermann, B., Pour, N. E., Krupp, V., Roller, S.,
Reimann, T., C. Sternel, D., Egawa, R., Takizawa, H., & Simonis, F. (2020). ExaFSA:
Parallel fluid-structure-acoustic simulation. In H.-J. Bungartz, S. Reiz, B. Uekermann, P.
Neumann, & W. E. Nagel (Eds.), Software for exascale computing - SPPEXA 2016-2019 (pp.
271-300). Springer International Publishing. https://doi.org/10.1007 /978-3-030-47956-5_
10

Lohmann, N. (2023). JSON for modern C++. In GitHub repository (Version 3.11.3).
https://github.com/nlohmann; GitHub. https://json.nlohmann.me

Martin, B. G. (2022). Robust and efficient barycentric cell-interpolation for volumetric coupling
with preCICE [Master's thesis, Technical University of Munich]. https://mediatum.ub.tum.
de/doc/1685618,/1685618. pdf

Schneider, D., Schrader, T., & Uekermann, B. (2023). Data-parallel radial-basis-function
interpolation in preCICE. X International Conference on Computational Methods for Coupled
Problems in Science and Engineering. https://doi.org/10.23967/c.coupled.2023.016

Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit (4th ed.). Kitware.
ISBN: 978-1-930934-19-1

Totounferoush, A., Simonis, F., Uekermann, B., & Schulte, M. (2021). Efficient and scalable
initialization of partitioned coupled simulations with preCICE. Algorithms, 14(6). https:
//doi.org/10.3390/a14060166

Valcke, S., Piacentini, A., & Jonville, G. (2022). Benchmarking regridding libraries used in
earth system modelling. Mathematical and Computational Applications, 27(2). https:
//doi.org/10.3390/mca27020031

Schneider et al. (2024). ASTE: An artificial solver testing environment for partitioned coupling with preCICE. Journal of Open Source Software, 4
9(103), 7127. https://doi.org/10.21105/joss.07127.

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
https://doi.org/10.18419/opus-10581
https://doi.org/10.1007/978-3-030-47956-5_10
https://doi.org/10.1007/978-3-030-47956-5_10
https://github.com/nlohmann
https://json.nlohmann.me
https://mediatum.ub.tum.de/doc/1685618/1685618.pdf
https://mediatum.ub.tum.de/doc/1685618/1685618.pdf
https://doi.org/10.23967/c.coupled.2023.016
https://doi.org/10.3390/a14060166
https://doi.org/10.3390/a14060166
https://doi.org/10.3390/mca27020031
https://doi.org/10.3390/mca27020031
https://doi.org/10.21105/joss.07127

	Summary
	Statement of need
	Functionality & Use
	Acknowledgements
	References

