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Summary
startinpy is a Python library for modelling and processing terrains using a two-dimensional
(2D) Delaunay triangulation (DT). The triangulation is computed in 2D, but the z-elevation
of the vertices is kept (which is referred to as 2.5D modelling).

Given a dataset formed of elevation samples (eg collected with lidar or photogrammetry),
startinpy allows us to reconstruct a terrain, to remove points, to search efficiently in the
triangulation, to attach attributes to the vertices, and to convert to a gridded terrain. Additional
functionality is provided, including a few spatial interpolation methods based on the DT and/or
its dual structure, the Voronoi diagram, have been implemented: linear interpolation, natural
neighbours (Sibson, 1981), and Laplace interpolation (Belikov et al., 1997).

The core of the library is written in Rust (so it can process large datasets quickly), robust
arithmetic is used for the updating of the DT (the robust predicates of Shewchuk (1996) are
used), and it uses NumPy for input/output of data, which allows it to integrate with other
Python libraries used by researchers.

The core of the library has been used to build a global coastal terrain using laser altimetric
measurements from the space station (Pronk et al., 2024), and it has been used for several
projects dealing with aerial and space lidar datasets, for instance Meschin (2023) and Kan
(2024).

While startinpy was developed primarily to build and manipulate terrains, it can be used as
an easy-to-use and fast 2D Delaunay triangulator (and Voronoi diagram generator), which,
as elaborated in Aurenhammer et al. (2012), are two structures that play an essential role in
several disciplines: astronomy, geology, ecology, engineering, etc.
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Figure 1: A lidar dataset terrain reconstructed with startinpy and visualised with another Python library
(Polyscope).

Statement of need
While there exist many Python libraries for computing the DT in 2D (a search for “Delaunay
triangulation” in the Python Package Index (PyPI) returns over 200 packages), most of them
are not fully suitable for the modelling of 2.5D triangulated terrain.

startinpy has the following properties, which greatly improve the modelling and processing of
2.5D terrains.

It is fast for large datasets. With a modern lidar scanner, we can easily collect 50 samples/𝑚2,
which means that a 1 𝑘𝑚2 area will contain 50+ million samples. Since constructing a DT
requires several steps, if those steps are implemented in pure Python then the library becomes
very slow. As can be seen in the DT construction comparison, startinpy is faster than most other
libraries for large datasets. This is partly because it is 100% developed in Rust; the core library is
called “startin” and its the source code is available at https://github.com/hugoledoux/startin.

Its data structure is exposed. Most libraries only return a list of vertices and triangles (triplets
of vertex identifiers), which means that the user has to build an auxiliary graph to be able to
find the adjacent triangles of a given one, or to find all the triangles that are incident to a given
vertex (eg to calculate the normal). The name “startinpy” comes from the fact that the data
structure implemented is based on the concept of stars in a graph (Blandford et al., 2005),
which allows us to store adjacency and incidence, and have a very compact data structure.
startinpy exposes methods to search triangles, find the adjacent triangles of a triangle, and
find the incident triangles to a vertex.

The DT is incrementally constructed and deletion of vertices is possible. Unlike the majority
of 2D DT implementations, startinpy implements an incremental insertion algorithm (Lawson,
1972), which allows for constructing a simplified TIN that best approximates the original terrain
with only 10% of the points; see Garland & Heckbert (1995) for different strategies. startinpy
also implements a modification of the deletion algorithm in Mostafavi et al. (2003), extended
to allow the deletion of vertices on the boundary of the convex hull. The deletion of vertices
in a DT is useful to remove outliers (which are detected by analysing neighbouring triangles in
the DT) and for the implementation of the natural neighbours interpolation method (Sibson,
1981).

The z-values are stored and xy-duplicates handled. Some libraries allow us to attach extra
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information to a vertex, but most often one has to build an auxiliary data structure in Python
to manage those. Doing so is error-prone, tedious, and makes operations in 3D more complex
(eg calculating the slope of an area, calculating the normal of a vertex, estimating the elevation
with spatial interpolation, calculating volumes). By storing the z-values, startinpy allows us to
merge vertices that are close to each other (in the xy-plane; the tolerance can be defined by
the user) and if there are xy-duplicates, then a user-defined z-value can be kept (eg lowest or
highest, depending on the application).

Extra attributes can be stored in the DT. It is possible to attach extra attributes with each
vertex of the terrain. This can be used to preserve the lidar properties of the input points (eg
intensity, RGB, number of returns, etc.).

The documentation of startinpy contains several examples of the library and how it can be used
to prepare datasets for input to machine learning algorithms, to convert to different formats
used in practice, to interpolate, etc.
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