
startinpy: A Python library for modelling and
processing 2.5D triangulated terrains
Hugo Ledoux 1

1 Delft University of Technology, the Netherlands
DOI: 10.21105/joss.07123

Software
• Review
• Repository
• Archive

Editor: Michael Mahoney
Reviewers:

• @weiji14
• @kylemann16
• @gadomski

Submitted: 17 July 2024
Published: 12 November 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
startinpy is a Python library for modelling and processing terrains using a two-dimensional
(2D) Delaunay triangulation (DT). The triangulation is computed in 2D, but the z-elevation
of the vertices is kept (which is referred to as 2.5D modelling).

Given a dataset formed of elevation samples (eg collected with lidar or photogrammetry),
startinpy allows us to reconstruct a terrain, to remove points, to search efficiently in the
triangulation, to attach attributes to the vertices, and to convert to a gridded terrain. Additional
functionality is provided, including a few spatial interpolation methods based on the DT and/or
its dual structure, the Voronoi diagram, have been implemented: linear interpolation, natural
neighbours (Sibson, 1981), and Laplace interpolation (Belikov et al., 1997).

The core of the library is written in Rust (so it can process large datasets quickly), robust
arithmetic is used for the updating of the DT (the robust predicates of Shewchuk (1996) are
used), and it uses NumPy for input/output of data, which allows it to integrate with other
Python libraries used by researchers.

The core of the library has been used to build a global coastal terrain using laser altimetric
measurements from the space station (Pronk et al., 2024), and it has been used for several
projects dealing with aerial and space lidar datasets, for instance Meschin (2023) and Kan
(2024).

While startinpy was developed primarily to build and manipulate terrains, it can be used as
an easy-to-use and fast 2D Delaunay triangulator (and Voronoi diagram generator), which,
as elaborated in Aurenhammer et al. (2012), are two structures that play an essential role in
several disciplines: astronomy, geology, ecology, engineering, etc.

Ledoux. (2024). startinpy: A Python library for modelling and processing 2.5D triangulated terrains. Journal of Open Source Software, 9(103),
7123. https://doi.org/10.21105/joss.07123.

1

https://orcid.org/0000-0002-1251-8654
https://doi.org/10.21105/joss.07123
https://github.com/openjournals/joss-reviews/issues/7123
https://github.com/hugoledoux/startinpy
https://doi.org/10.5281/zenodo.14001126
https://www.mm218.dev/
https://orcid.org/0000-0003-2402-304X
https://github.com/weiji14
https://github.com/kylemann16
https://github.com/gadomski
https://creativecommons.org/licenses/by/4.0/
https://www.rust-lang.org/
https://doi.org/10.21105/joss.07123


Figure 1: A lidar dataset terrain reconstructed with startinpy and visualised with another Python library
(Polyscope).

Statement of need
While there exist many Python libraries for computing the DT in 2D (a search for “Delaunay
triangulation” in the Python Package Index (PyPI) returns over 200 packages), most of them
are not fully suitable for the modelling of 2.5D triangulated terrain.

startinpy has the following properties, which greatly improve the modelling and processing of
2.5D terrains.

It is fast for large datasets. With a modern lidar scanner, we can easily collect 50 samples/𝑚2,
which means that a 1 𝑘𝑚2 area will contain 50+ million samples. Since constructing a DT
requires several steps, if those steps are implemented in pure Python then the library becomes
very slow. As can be seen in the DT construction comparison, startinpy is faster than most other
libraries for large datasets. This is partly because it is 100% developed in Rust; the core library is
called “startin” and its the source code is available at https://github.com/hugoledoux/startin.

Its data structure is exposed. Most libraries only return a list of vertices and triangles (triplets
of vertex identifiers), which means that the user has to build an auxiliary graph to be able to
find the adjacent triangles of a given one, or to find all the triangles that are incident to a given
vertex (eg to calculate the normal). The name “startinpy” comes from the fact that the data
structure implemented is based on the concept of stars in a graph (Blandford et al., 2005),
which allows us to store adjacency and incidence, and have a very compact data structure.
startinpy exposes methods to search triangles, find the adjacent triangles of a triangle, and
find the incident triangles to a vertex.

The DT is incrementally constructed and deletion of vertices is possible. Unlike the majority
of 2D DT implementations, startinpy implements an incremental insertion algorithm (Lawson,
1972), which allows for constructing a simplified TIN that best approximates the original terrain
with only 10% of the points; see Garland & Heckbert (1995) for different strategies. startinpy
also implements a modification of the deletion algorithm in Mostafavi et al. (2003), extended
to allow the deletion of vertices on the boundary of the convex hull. The deletion of vertices
in a DT is useful to remove outliers (which are detected by analysing neighbouring triangles in
the DT) and for the implementation of the natural neighbours interpolation method (Sibson,
1981).

The z-values are stored and xy-duplicates handled. Some libraries allow us to attach extra

Ledoux. (2024). startinpy: A Python library for modelling and processing 2.5D triangulated terrains. Journal of Open Source Software, 9(103),
7123. https://doi.org/10.21105/joss.07123.

2

https://pypi.org/search/?q=Delaunay+triangulation
https://startinpy.readthedocs.io/latest/comparison.html
https://github.com/hugoledoux/startin
https://doi.org/10.21105/joss.07123


information to a vertex, but most often one has to build an auxiliary data structure in Python
to manage those. Doing so is error-prone, tedious, and makes operations in 3D more complex
(eg calculating the slope of an area, calculating the normal of a vertex, estimating the elevation
with spatial interpolation, calculating volumes). By storing the z-values, startinpy allows us to
merge vertices that are close to each other (in the xy-plane; the tolerance can be defined by
the user) and if there are xy-duplicates, then a user-defined z-value can be kept (eg lowest or
highest, depending on the application).

Extra attributes can be stored in the DT. It is possible to attach extra attributes with each
vertex of the terrain. This can be used to preserve the lidar properties of the input points (eg
intensity, RGB, number of returns, etc.).

The documentation of startinpy contains several examples of the library and how it can be used
to prepare datasets for input to machine learning algorithms, to convert to different formats
used in practice, to interpolate, etc.

Acknowledgements
I acknowledge the help of the students following the course Digital terrain modelling (GEO1015)
at TUDelft over the last few years. Their feedback, questions, and frustrations on preliminary
versions of startinpy helped me greatly.

References
Aurenhammer, F., Klein, R., & Lee, D.-T. (2012). Voronoi diagrams and Delaunay triangula-

tions. World Scientific. https://doi.org/10.1142/8685

Belikov, V. V., Ivanov, V. D., Kontorovich, V. K., Korytnik, S. A., & Semenov, A. Y. (1997).
The non-Sibsonian interpolation: A new method of interpolation of the values of a function
on an arbitrary set of points. Computational Mathematics and Mathematical Physics, 37,
9–15.

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., & Kadow, C. (2005). Compact representations
of simplicial meshes in two and three dimensions. International Journal of Computational
Geometry and Applications, 15(1), 3–24. https://doi.org/10.1142/S0218195905001580

Garland, M., & Heckbert, P. S. (1995). Fast polygonal approximation of terrain and height
fields (CMU-CS-95-181). School of Computer Science, Carnegie Mellon University; School
of Computer Science, Carnegie Mellon University.

Kan, L. W. L. (2024). Spatial height prediction of ICESat-2 data using random forest regression
[Master’s thesis]. MSc thesis in Geomatics, Delft University of Technology.

Lawson, C. L. (1972). Transforming triangulations. Discrete Applied Mathematics, 3, 365–372.
https://doi.org/10.1016/0012-365X(72)90093-3

Meschin, K. (2023). Canopy gap fraction estimation from ICESat-2 ATL08 product [Master’s
thesis]. MSc thesis in Geomatics, Delft University of Technology.

Mostafavi, M. A., Gold, C. M., & Dakowicz, M. (2003). Delete and insert operations in
Voronoi/Delaunay methods and applications. Computers & Geosciences, 29(4), 523–530.
https://doi.org/10.1016/S0098-3004(03)00017-7

Pronk, M., Hooijer, A., Eilander, D., Haag, A., Jong, T. de, Vousdoukas, M., Vernimmen,
R., Ledoux, H., & Eleveld, M. (2024). DeltaDTM: A global coastal digital terrain model.
Nature Scientific Data, 11(273). https://doi.org/10.1038/s41597-024-03091-9

Shewchuk, J. R. (1996). Robust adaptive floating-point geometric predicates. Proceedings
12th Annual Symposium on Computational Geometry, 141–150. https://doi.org/10.1145/

Ledoux. (2024). startinpy: A Python library for modelling and processing 2.5D triangulated terrains. Journal of Open Source Software, 9(103),
7123. https://doi.org/10.21105/joss.07123.

3

https://startinpy.rtfd.io
https://3d.bk.tudelft.nl/courses/geo1015/
https://3d.bk.tudelft.nl/courses/geo1015/
https://doi.org/10.1142/8685
https://doi.org/10.1142/S0218195905001580
https://doi.org/10.1016/0012-365X(72)90093-3
https://doi.org/10.1016/S0098-3004(03)00017-7
https://doi.org/10.1038/s41597-024-03091-9
https://doi.org/10.1145/237218.237337
https://doi.org/10.1145/237218.237337
https://doi.org/10.21105/joss.07123


237218.237337

Sibson, R. (1981). A brief description of natural neighbour interpolation. In V. Barnett (Ed.),
Interpreting multivariate data (pp. 21–36). Wiley.

Ledoux. (2024). startinpy: A Python library for modelling and processing 2.5D triangulated terrains. Journal of Open Source Software, 9(103),
7123. https://doi.org/10.21105/joss.07123.

4

https://doi.org/10.1145/237218.237337
https://doi.org/10.1145/237218.237337
https://doi.org/10.1145/237218.237337
https://doi.org/10.21105/joss.07123

	Summary
	Statement of need
	Acknowledgements
	References

