
colorspace: A Python Toolbox for Manipulating and
Assessing Colors and Palettes
Reto Stauffer 1,2 and Achim Zeileis 1

1 Department of Statistics, Universität Innsbruck, Austria 2 Digital Science Center, Universität
Innsbruck, Austria

DOI: 10.21105/joss.07120

Software
• Review
• Repository
• Archive

Editor: Julia Romanowska
Reviewers:

• @hollowscene
• @dmreagan

Submitted: 29 July 2024
Published: 29 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Python colorspace package provides a toolbox for mapping between different color spaces,
which can then be used to generate a wide range of perceptually-based color palettes for
qualitative or quantitative (sequential or diverging) information. These palettes (as well as
any other sets of colors) can be visualized, assessed, and manipulated in various ways, e.g., by
color swatches, emulating the effects of color vision deficiencies, or depicting the perceptual
properties. Finally, colorspace integrates seamlessly with standard Python graphics packages
like matplotlib, seaborn, and plotly, making it a valuable resource for both developers and
practitioners to customize, assess, and implement color palettes in their data visualization
workflows.

Statement of need
Color is an integral element of visualizations and graphics and is essential for communicating
(scientific) information. However, colors need to be chosen carefully so that they support
the information displayed for all viewers (see e.g., Tufte, 1990; Ware, 2004; Wilke, 2019).
Therefore, suitable color palettes have been proposed in the literature (e.g., Brewer, 1999;
Crameri et al., 2020; Ihaka, 2003) and many software packages transitioned to better color
defaults over the last decade. A prominent example from the Python community is matplotlib
2.0 (Hunter et al., 2017), which replaced the classic “jet” palette (a variation of the infamous
“rainbow”) by the perceptually-based “viridis” palette. Hence a wide range of useful palettes
for different purposes is provided in a number of Python packages today, including cmcramery
(Rollo, 2024), colormap (Cokelaer, 2024), colormaps (Patel, 2024), matplotlib (Hunter, 2007),
palettable (Davis, 2023), and seaborn (Waskom, 2021).

However, colors are provided as a fixed set in most graphics packages. While this makes it
easy to use them in different applications, it is usually not easy to modify the perceptual
properties or to set up new palettes following the same principles. The colorspace package
addresses this by supporting color descriptions using different color spaces (hence the package
name), including some that are based on human color perception. One notable example is
the Hue-Chroma-Luminance (HCL) model, which represents colors by coordinates on three
perceptually-based axes: hue (type of color), chroma (colorfulness), and luminance (brightness).
Selecting colors along paths along these axes allows for intuitive construction of palettes that
closely match many of the palettes provided in the packages listed above.

In addition to functions and interactive apps for HCL-based colors, the colorspace package
also offers functions and classes for handling, transforming, and visualizing color palettes (from
any source). In particular, this includes the simulation of color vision deficiencies (Machado et
al., 2009) but also contrast ratios, desaturation, lightening/darkening, etc.

Stauffer, & Zeileis. (2024). colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Open Source Software,
9(102), 7120. https://doi.org/10.21105/joss.07120.

1

https://orcid.org/0000-0002-3798-5507
https://orcid.org/0000-0003-0918-3766
https://doi.org/10.21105/joss.07120
https://github.com/openjournals/joss-reviews/issues/7120
https://github.com/retostauffer/python-colorspace
https://doi.org/10.5281/zenodo.14004295
https://orcid.org/0000-0001-6733-1953
https://github.com/hollowscene
https://github.com/dmreagan
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07120


The colorspace Python package was inspired by the eponymous R package (Zeileis et al., 2020).
It comes with extensive documentation at https://retostauffer.github.io/python-colorspace/,
including many practical examples. The package complements existing graphics packages in
Python both for casual users and data visualization experts. Selected highlights are presented
in the following, motivating its usefulness for various kinds of graphics in different fields of
application and research.

Key functionality

HCL-based color palettes
The key functions and classes for constructing color palettes using hue-chroma-luminance
paths (and then mapping these to hex codes) are:

• qualitative_hcl: For qualitative or unordered categorical information, where every
color should receive a similar perceptual weight.

• sequential_hcl: For ordered/numeric information from high to low (or vice versa).
• diverging_hcl: For ordered/numeric information around a central neutral value, where

colors diverge from neutral to two extremes.

These functions provide a range of named palettes inspired by well-established packages but
actually implemented using HCL paths. Additionally, the HCL parameters can be modified or
new palettes can be created from scratch.

As an example, Figure 1 depicts color swatches for four viridis variations. The first, pal1, sets
up the palette from its name. It is identical to the second, pal2, which employes the HCL
specification directly: the hue ranges from purple (300) to yellow (75), colorfulness (chroma)
increases from 40 to 95, and luminance (brightness) from dark (15) to light (90). The power

parameter chooses a linear change in chroma and a slightly nonlinear path for luminance.

In pal3 and pal4, the most HCL properties are kept the same but some are modified: pal3

uses a triangular chroma path from 40 via 90 to 20, yielding muted colors at the end of the
palette. pal4 just changes the starting hue for the palette to green (200) instead of purple.
All four palettes are visualized by the swatchplot function from the package.

Figure 1: Swatches of four HCL-based sequential palettes: pal1 is the predefined HCL-based viridis
palette, pal2 is identical to pal2 but created “by hand” and pal3 and pal4 are modified versions with a
triangular chroma paths and reduced hue range, respectively.

The objects returned by the palette functions provide a series of methods, e.g., pal1.settings
for displaying the HCL parameters, pal1(3) for obtaining a number of hex colors, or
pal1.cmap() for setting up a matplotlib color map, among others.

from colorspace import palette, sequential_hcl, swatchplot

pal1 = sequential_hcl(palette = "viridis")

pal2 = sequential_hcl(h = [300, 75], c = [40, 95], l = [15, 90],

power = [1., 1.1])

pal3 = sequential_hcl(palette = "viridis", cmax = 90, c2 = 20)

Stauffer, & Zeileis. (2024). colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Open Source Software,
9(102), 7120. https://doi.org/10.21105/joss.07120.

2

https://retostauffer.github.io/python-colorspace/
https://doi.org/10.21105/joss.07120


pal4 = sequential_hcl(palette = "viridis", h1 = 200)

swatchplot({"Viridis (and altered versions of it)": [

palette(pal1(7), "By name"),

palette(pal2(7), "By hand"),

palette(pal3(7), "With triangular chroma"),

palette(pal4(7), "With smaller hue range")

]}, figsize = (8, 1.75));

An overview of the named HCL-based palettes in colorspace is depicted in Figure 2.

from colorspace import hcl_palettes

hcl_palettes(plot = True, figsize = (20, 15))

Figure 2: Overview of the predefined (fully customizable) HCL color palettes.

Palette visualization and assessment
To better understand the properties of palette pal4, defined above, Figure 3 shows its HCL
spectrum (left) with separate lines for the hue, chroma, and luminance coordinates and the
corresponding path through the three-dimensional HCL space (right) where hue co-varies along
with chroma and luminance.

Figure 3: Hue-chroma-luminance spectrum plot (left) and corresponding path in the chroma-luminance
coordinate system (where hue changes with luminance) for the custom sequential palette pal4.

Stauffer, & Zeileis. (2024). colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Open Source Software,
9(102), 7120. https://doi.org/10.21105/joss.07120.

3

https://doi.org/10.21105/joss.07120


The spectrum in the first panel shows how the hue (right axis) changes from about 200 (green)
to 75 (yellow), while chroma and luminance (left axis) increase from about 20 to 95. Note
that the kink in the chroma curve for the greenish colors occurs because such dark greens
cannot have higher chromas when represented through RGB-based hex codes. The same is
visible in the second panel where the path moves along the outer edge of the HCL space.

pal4.specplot(figsize = (5, 5));

pal4.hclplot(n = 7, figsize = (5, 5));

Color vision deficiency
Another important assessment of a color palette is how well it works for viewers with color
vision deficiencies. This is exemplified in Figure 4, which depicts a demo plot (heatmap)
under “normal” vision (left), deuteranomaly (colloquially known as “red-green color blindness”,
center), and desaturated (gray scale, right). The palette in the top row is the traditional
fully-saturated RGB rainbow, deliberately selected here as a palette with poor perceptual
properties. It is contrasted with a perceptually-based sequential blue-yellow HCL palette in the
bottom row.

The sequential HCL palette is monotonic in luminance so that it is easy to distinguish high-
density and low-density regions under deuteranomaly and desaturation. However, the rainbow is
non-monotonic in luminance and parts of the red-green contrasts collapse under deuteranomaly,
making it much harder to interpret correctly.

from colorspace import rainbow, sequential_hcl

col1 = rainbow(end = 2/3, rev = True)(7)

col2 = sequential_hcl("Blue-Yellow", rev = True)(7)

from colorspace import demoplot, deutan, desaturate

import matplotlib.pyplot as plt

fig, ax = plt.subplots(2, 3, figsize = (9, 4))

demoplot(col1, "Heatmap", ax = ax[0,0], ylabel = "Rainbow", title = "Original")

demoplot(col2, "Heatmap", ax = ax[1,0], ylabel = "HCL (Blue-Yellow)")

demoplot(deutan(col1), "Heatmap", ax = ax[0,1], title = "Deuteranope")

demoplot(deutan(col2), "Heatmap", ax = ax[1,1])

demoplot(desaturate(col1), "Heatmap", ax = ax[0,2], title = "Desaturated")

demoplot(desaturate(col2), "Heatmap", ax = ax[1,2])

plt.show()

Figure 4: Example of color vision deficiency emulation and color manipulation using a heatmap.
Top/bottom: RGB rainbow based palette and HCL based sequential palette. Left to right: Original
colors, deuteranope color vision, and desaturated representation.

Stauffer, & Zeileis. (2024). colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Open Source Software,
9(102), 7120. https://doi.org/10.21105/joss.07120.

4

https://doi.org/10.21105/joss.07120


Integration with Python graphics packages
To illustrate that colorspace can be easily combined with different graphics workflows in Python,
Figure 5 shows a heatmap (two-dimensional histogram) from matplotlib and multi-group density
from seaborn. The code below employs an example data set from the package (using pandas)
with daily maximum and minimum temperature. For matplotlib the colormap (.cmap();
LinearSegmentedColormap) is extracted from the adapted viridis palette pal3 defined above.
For seaborn the hex codes from a custom qualitative palette are extracted via .colors(4).

from colorspace import dataset, qualitative_hcl

import matplotlib.pyplot as plt

import seaborn as sns

df = dataset("HarzTraffic")

fig = plt.hist2d(df.tempmin, df.tempmax, bins = 20,

cmap = pal3.cmap().reversed())

plt.title("Joint density daily min/max temperature")

plt.xlabel("minimum temperature [deg C]")

plt.ylabel("maximum temperature [deg C]")

plt.show()

pal = qualitative_hcl("Dark 3", h1 = -180, h2 = 100)

g = sns.displot(data = df, x = "tempmax", hue = "season", fill = "season",

kind = "kde", rug = True, height = 4, aspect = 1,

palette = pal.colors(4))

g.set_axis_labels("temperature [deg C]")

g.set(title = "Distribution of daily maximum temperature given season")

plt.show()

Figure 5: Example of a matplotlib heatmap and a seaborn density using custom HCL-based colors.

Dependencies and availability
The colorspace package is available from PyPI at https://pypi.org/project/colorspace. It is
designed to be lightweight, requiring only numpy (Harris et al., 2020) for the core functionality.
Only a few features rely on matplotlib, imageio (Klein et al., 2024), and pandas (The Pandas
Development Team, 2024). More information and an interactive interface can be found on
https://hclwizard.org/. Package development is hosted on GitHub at https://github.com/
retostauffer/python-colorspace. Bug reports, code contributions, and feature requests are
warmly welcome.

Stauffer, & Zeileis. (2024). colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Open Source Software,
9(102), 7120. https://doi.org/10.21105/joss.07120.

5

https://pypi.org/project/colorspace
https://hclwizard.org/
https://github.com/retostauffer/python-colorspace
https://github.com/retostauffer/python-colorspace
https://doi.org/10.21105/joss.07120


References
Brewer, C. A. (1999). Color use guidelines for data representation. Proceedings of the Section

on Statistical Graphics, American Statistical Association, 55–60.

Cokelaer, T. (2024). Colormap (Version v1.1.0). Python Package Index (PyPI). https:
//pypi.org/project/colormap/

Crameri, F., Shephard, G. E., & Heron, P. J. (2020). The misuse of colour in science
communication. Nature Communications, 11(5444), 1–10. https://doi.org/10.1038/
s41467-020-19160-7

Davis, M. (2023). palettable: Color palettes for Python (Version v3.3.3). Python Package
Index (PyPI). https://pypi.org/project/palettable/

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., …
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55

Hunter, J. D., Dale, D., Firing, E., Droettboom, M., & the Matplotlib Development Team.
(2017). What’s new in matplotlib 2.0, changes to the default style. https://matplotlib.
org/stable/users/prev_whats_new/dflt_style_changes.html

Ihaka, R. (2003). Colour for presentation graphics. In K. Hornik, F. Leisch, & A. Zeileis (Eds.),
Proceedings of the 3rd international workshop on distributed statistical computing, vienna,
austria. https://www.R-project.org/conferences/DSC-2003/Proceedings/Ihaka.pdf

Klein, A., Wallkötter, S., Silvester, S., Rynes, A., actions-user, Müller, P., Nunez-Iglesias, J.,
Harfouche, M., Schrangl, L., Dennis, Lee, A., Pandede, McCormick, M., OrganicIrradiation,
Rai, A., Ladegaard, A., van Kemenade, H., Smith, T. D., Vaillant, G., … Singleton, J. (2024).
Imageio/imageio (Version v2.34.2). Zenodo. https://doi.org/10.5281/zenodo.12514964

Machado, G. M., Oliviera, M. M., & Fernandes, L. A. F. (2009). A physiologically-based
model for simulation of color vision deficiency. IEEE Transactions on Visualization and
Computer Graphics, 15(6), 1291–1298. https://doi.org/10.1109/tvcg.2009.113

Patel, P. (2024). Colormaps (Version v0.4.2). Python Package Index (PyPI). https://pypi.
org/project/colormaps/

Rollo, C. (2024). cmcrameri: Python wrapper around Fabio Crameri’s perceptually uniform col-
ormaps (Version v1.9). Python Package Index (PyPI). https://pypi.org/project/cmcrameri/

The Pandas Development Team. (2024). pandas-Dev/Pandas: pandas (Version v2.2.2).
Zenodo. https://doi.org/10.5281/zenodo.10957263

Tufte, E. (1990). Envisioning information. Graphics Press.

Ware, C. (2004). Color. In Information visualization: Perception for design (pp. 103–149).
Morgan Kaufmann Publishers Inc.

Waskom, M. L. (2021). seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Wilke, C. O. (2019). Fundamentals of data visualization. O’Reilly Media. ISBN: 1492031089

Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C., Murrell, P., Stauffer, R., & Wilke,
C. O. (2020). colorspace: A toolbox for manipulating and assessing colors and palettes.
Journal of Statistical Software, 96(1), 1–49. https://doi.org/10.18637/jss.v096.i01

Stauffer, & Zeileis. (2024). colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Open Source Software,
9(102), 7120. https://doi.org/10.21105/joss.07120.

6

https://pypi.org/project/colormap/
https://pypi.org/project/colormap/
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1038/s41467-020-19160-7
https://pypi.org/project/palettable/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/mcse.2007.55
https://matplotlib.org/stable/users/prev_whats_new/dflt_style_changes.html
https://matplotlib.org/stable/users/prev_whats_new/dflt_style_changes.html
https://www.R-project.org/conferences/DSC-2003/Proceedings/Ihaka.pdf
https://doi.org/10.5281/zenodo.12514964
https://doi.org/10.1109/tvcg.2009.113
https://pypi.org/project/colormaps/
https://pypi.org/project/colormaps/
https://pypi.org/project/cmcrameri/
https://doi.org/10.5281/zenodo.10957263
https://doi.org/10.21105/joss.03021
https://clauswilke.com/dataviz/color-basics.html
https://doi.org/10.18637/jss.v096.i01
https://doi.org/10.21105/joss.07120

	Summary
	Statement of need
	Key functionality
	HCL-based color palettes
	Palette visualization and assessment
	Color vision deficiency
	Integration with Python graphics packages

	Dependencies and availability
	References

