
Mango.jl: A Julia-Based Multi-Agent Simulation
Framework
Jens Sager 1,2* and Rico Schrage 1,2*

1 Digitalized Energy Systems Group, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg,
Germany 2 Energy Division, OFFIS Institute for Information Technology, 26121 Oldenburg, Germany *
These authors contributed equally.

DOI: 10.21105/joss.07098

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @aurorarossi
• @Tortar

Submitted: 07 August 2024
Published: 01 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Multi-agent simulations are inherently complex, making them difficult to implement, maintain,
and optimize. An agent, as defined by Russell & Norvig (2010), is software that perceives
its environment through sensors and acts upon it using actuators. Mango.jl is a simulation
framework for multi-agent systems implemented in Julia (Bezanson et al., 2017). It enables
quick implementations of multiple communicating agents, either spanning multiple devices or
in a single local environment.

For the design process, Mango.jl provides a general structure and a role concept to help
develop modular and loosely coupled agents. This is aided by the built-in task scheduler,
with convenience methods to easily schedule timed and repeated tasks that are executed
asynchronously.

Agents communicate with each other via message exchange. Each agent is associated with
a container that handles network operations for one or more agents. Messages may be sent
directly via TCP connections or indirectly using an MQTT broker. This way, Mango.jl makes
it easy to set up multi-agent simulations on multiple hardware devices.

Mango agents can run in real-time or using simulated time, with either discrete event or
stepped time versions. This is useful for simulations, where simulated time should run much
faster than real-time. These non-real-time simulation modes also enable the user to simulate
the communication to validate the robustness of multi-agent systems against communication
issues.

Statement of need
Applications of multi-agent systems can be found in various fields, such as in distributed
optimization (Yang et al., 2019), reinforcement learning (Gronauer & Diepold, 2022), robotics
(Chen et al., 2019), and more. Many of these systems are highly complex and feature
heterogeneous and interacting actors. This makes them inherently difficult to model and
develop. Therefore, a structured development framework to support this process is a valuable
asset.

While Mango.jl is a general purpose multi-agent framework, we will focus on energy systems
in the following as this is the domain the authors are most familiar with.

Many of the ideas for Mango.jl are based on the existing Python framework mango (Schrage et
al., 2024). The main reason for this Julia-based version is to allow better focus on simulation
performance, enabling larger scales of multi-agent simulations. This is especially relevant
in the energy domain, where an increasing amount of energy resources (e.g., batteries and
PV-generators) have distributed ownership, competing goals and contribute to the same power

Sager, & Schrage. (2024). Mango.jl: A Julia-Based Multi-Agent Simulation Framework. Journal of Open Source Software, 9(102), 7098.
https://doi.org/10.21105/joss.07098.

1

https://orcid.org/0000-0001-6352-4213
https://orcid.org/0000-0001-5339-6553
https://doi.org/10.21105/joss.07098
https://github.com/openjournals/joss-reviews/issues/7098
https://github.com/OFFIS-DAI/Mango.jl
https://doi.org/10.5281/zenodo.13860452
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/aurorarossi
https://github.com/Tortar
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07098

grid. Large scale multi-agent simulations allow researchers to study the behavior of these
participants in energy markets and grid simulations.

The Python version of mango has already been successfully applied to various research areas
in the energy domain, including coalition formation in multi-energy networks (Schrage &
Nieße, 2023), distributed market participation of battery storage units (Tiemann et al., 2022),
distributed black start (Stark et al., 2021), and investigating the impact of communication
topologies on distributed optimization heuristics (Holly & Nieße, 2021). New Julia-based
projects using Mango.jl are in active development.

Related Frameworks
To our knowledge, there is no Julia-based multi-agent framework with a focus on agent
communication and distributed operation like Mango.jl.

Agents.jl (Datseris et al., 2022) is a multi-agent framework for modeling agent interactions in
a defined space to observe emergent properties like in animal flocking behavior or the spreading
of diseases. This puts it in line with frameworks like mesa (Kazil et al., 2020) and NetLogo
(Tisue & Wilensky, 2004). These have a different scope than Mango.jl, which is more focused
on agent communication and internal agent logic for software applications.

JADE (Bellifemine et al., 2001) and JIAC (Lützenberger et al., 2013) are Java frameworks
of similar scope but are not actively developed anymore. JACK (Winikoff, 2005) provides a
language and tools to implement communicating agents but is discontinued and proprietary.
The agentframework (Zhang, 2022) is based on JavaScript and has less focus on communication
than Mango.jl. Lastly, the original Python version of mango (Schrage et al., 2024) is of course
most similar in scope, but makes it more difficult to write high performance simulations, due
to the use of asyncio and the lack of native multi-threading in Python.

Performance

Figure 1: Performance comparison of Python and Julia mango.

The performance of the Python and Julia versions of mango were benchmarked against each
other. The results are shown in Figure 1 and the relevant code is available at mango_benchmark.

The aim of these scenarios is to measure the performance of the frameworks’ core features.
This mainly means it measures how efficiently tasks are scheduled and messages are sent and

Sager, & Schrage. (2024). Mango.jl: A Julia-Based Multi-Agent Simulation Framework. Journal of Open Source Software, 9(102), 7098.
https://doi.org/10.21105/joss.07098.

2

https://github.com/OFFIS-DAI/mango_benchmark
https://doi.org/10.21105/joss.07098

handled. To achieve this, benchmark scenarios have agents set up in a small world topology
communicating a fixed number of messages between each other while performing simulated
workloads. All workloads in the agents are entirely simulated by static delays. Thus, the
benchmarks assume that workloads in Python and Julia are identical.

The main advantage of Mango.jl is in the ease of parallelization. Python can, in some cases,
reach similar performance using subprocesses for parallel execution to circumvent the limitations
of the Python global interpreter lock. Compared to native threads in Julia, however, this is
more prone to issues with the operating system, because it requires large numbers of file handles
to operate the subprocesses. Overall, it is easier to get high performance from Mango.jl.

Basic Example
In this example, we define two agents in two containers (i.e., at different addresses) that pass
messages to each other directly via TCP. Containers can be set up and equipped with the
necessary TCP protocol.

using Mango

Create the container instances with TCP protocol

container = create_tcp_container("127.0.0.1", 5555)

container2 = create_tcp_container("127.0.0.1", 5556)

Now, we need to define the agents. An agent in Mango.jl is a struct defined with the @agent

macro. We define a TCPPingPongAgent that has an internal counter for incoming messages.

@agent struct TCPPingPongAgent

counter::Int

end

After creation, agents have to be registered to their respective container.

Create instances of ping pong agents

ping_agent = TCPPingPongAgent(0)

pong_agent = TCPPingPongAgent(0)

register each agent to a container and give them a name

register(container, ping_agent, "Agent_1")

register(container2, pong_agent, "Agent_2")

When an incoming message is addressed to an agent, its container will call the handle_message

function for it. Using Julia’s multiple dispatch, we can define a new handle_message method
for our agent.

Override the default handle_message function for ping pong agents

function Mango.handle_message(agent::TCPPingPongAgent, message::Any, meta::Any)

agent.counter += 1

println(

"$(agent.aid) got a message: $message." *

"This is message number: $(agent.counter) for me!"

)

doing very important work

sleep(0.5)

if message == "Ping"

reply_to(agent, "Pong", meta)

Sager, & Schrage. (2024). Mango.jl: A Julia-Based Multi-Agent Simulation Framework. Journal of Open Source Software, 9(102), 7098.
https://doi.org/10.21105/joss.07098.

3

https://doi.org/10.21105/joss.07098

elseif message == "Pong"

reply_to(agent, "Ping", meta)

end

end

With all this in place, we can send a message to the first agent to start the repeated message
exchange. To do this, we need to start the containers so that they listen for incoming messages
and send the initiating message. The best way to start the container message loops and ensure
they are correctly shut down in the end is the activate(containers) function.

activate([container, container2]) do

send_message(ping_agent, "Ping", address(pong_agent))

wait for 5 messages to have been sent

while ping_agent.counter < 5

sleep(1)

end

end

Acknowledgements
This work has been partly funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 359941476.

References
Bellifemine, F., Poggi, A., & Rimassa, G. (2001). JADE: A FIPA2000 compliant agent devel-

opment environment. Proceedings of the Fifth International Conference on Autonomous
Agents, 216–217. https://doi.org/10.1145/375735.376120

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Chen, F., Ren, W., & others. (2019). On the control of multi-agent systems: A survey.
Foundations and Trends® in Systems and Control, 6(4), 339–499. https://doi.org/10.
1561/2600000019

Datseris, G., Vahdati, A. R., & DuBois, T. C. (2022). Agents.jl: A performant and
feature-full agent-based modeling software of minimal code complexity. SIMULATION,
003754972110688. https://doi.org/10.1177/00375497211068820

Gronauer, S., & Diepold, K. (2022). Multi-agent deep reinforcement learning: A survey. Artifi-
cial Intelligence Review, 55(2), 895–943. https://doi.org/10.1007/s10462-021-09996-w

Holly, S., & Nieße, A. (2021). Dynamic communication topologies for distributed heuristics in
energy system optimization algorithms. 2021 16th Conference on Computer Science and
Intelligence Systems (FedCSIS), 191–200. https://doi.org/10.15439/2021F60

Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for agent-based modeling: The
mesa framework. In R. Thomson, H. Bisgin, C. Dancy, A. Hyder, & M. Hussain (Eds.),
Social, cultural, and behavioral modeling (pp. 308–317). Springer International Publishing.
https://doi.org/10.1007/978-3-030-61255-9_30

Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A., Keiser, J.,
Burkhardt, M., Kaiser, S., & Albayrak, S. (2013). JIAC V: A MAS framework for industrial
applications. Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-Agent Systems, 1189–1190.

Sager, & Schrage. (2024). Mango.jl: A Julia-Based Multi-Agent Simulation Framework. Journal of Open Source Software, 9(102), 7098.
https://doi.org/10.21105/joss.07098.

4

https://doi.org/10.1145/375735.376120
https://doi.org/10.1137/141000671
https://doi.org/10.1561/2600000019
https://doi.org/10.1561/2600000019
https://doi.org/10.1177/00375497211068820
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.15439/2021F60
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.21105/joss.07098

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall.

Schrage, R., & Nieße, A. (2023). Influence of adaptive coupling points on coalition forma-
tion in multi-energy systems. Applied Network Science, 8(1). https://doi.org/10.1007/
s41109-023-00553-8

Schrage, R., Sager, J., Hörding, J. P., & Holly, S. (2024). Mango: A modular Python-based
agent simulation framework. SoftwareX, 27, 101791. https://doi.org/10.1016/j.softx.2024.
101791

Stark, S., Volkova, A., Lehnhoff, S., & Meer, H. de. (2021). Why your power system
restoration does not work and what the ICT system can do about it. Proceedings of
the Twelfth ACM International Conference on Future Energy Systems, 269–273. https:
//doi.org/10.1145/3447555.3465415

Tiemann, P. H., Nebel-Wenner, M., Holly, S., Frost, E., Jimenez Martinez, A., & Nieße, A.
(2022). Operational flexibility for multi-purpose usage of pooled battery storage systems.
Energy Informatics, 5(1), 1–13. https://doi.org/10.1186/s42162-022-00209-4

Tisue, S., & Wilensky, U. (2004). Netlogo: A simple environment for modeling complexity.
International Conference on Complex Systems, 21, 16–21.

Winikoff, M. (2005). JACK™ intelligent agents: An industrial strength platform. Multi-Agent
Programming: Languages, Platforms and Applications, 175–193. https://doi.org/10.1007/
0-387-26350-0_7

Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, H., Lin, Z., &
Johansson, K. H. (2019). A survey of distributed optimization. Annual Reviews in Control,
47, 278–305. https://doi.org/10.1016/j.arcontrol.2019.05.006

Zhang, L. (2022). Agentframework (2.0.1) [last access 07-08-2024]. https://github.com/
agentframework/agentframework

Sager, & Schrage. (2024). Mango.jl: A Julia-Based Multi-Agent Simulation Framework. Journal of Open Source Software, 9(102), 7098.
https://doi.org/10.21105/joss.07098.

5

https://doi.org/10.1007/s41109-023-00553-8
https://doi.org/10.1007/s41109-023-00553-8
https://doi.org/10.1016/j.softx.2024.101791
https://doi.org/10.1016/j.softx.2024.101791
https://doi.org/10.1145/3447555.3465415
https://doi.org/10.1145/3447555.3465415
https://doi.org/10.1186/s42162-022-00209-4
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1016/j.arcontrol.2019.05.006
https://github.com/agentframework/agentframework
https://github.com/agentframework/agentframework
https://doi.org/10.21105/joss.07098

	Summary
	Statement of need
	Related Frameworks
	Performance
	Basic Example
	Acknowledgements
	References

