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Summary
AutoBZ.jl is a modular Julia (Bezanson et al., 2017) package implementing efficient algorithms
for Brillouin zone (BZ) integration, a fundamental step in electronic structure calculations
of physical observables in crystals such as the density of states and the optical conductivity.
These capabilities make AutoBZ.jl an extensible framework for computational research on
material properties that can compute a broad range of quantities found in experimental spectra
or high-throughput screenings using Wannier interpolation and BZ integration (Mostofi et al.,
2008). Our BZ integration methods, described in Refs. (Kaye et al., 2023) and (Van Muñoz et
al., 2024), are high-order accurate, automatically convergent to a user-specified error tolerance,
and if needed, adaptive in momentum space. This allows the resolution of low-temperature
properties of strongly interacting systems, using many-body methods such as dynamical mean-
field theory (Georges et al., 1996), in which frequency-dependent electronic self-energies may
produce scattering rates in the sub-meV regime. The corresponding low-temperature regions
of phase diagrams are typically out of reach using traditional integration algorithms, which
struggle to resolve localized features in momentum space. AutoBZ.jl can also be used to
compute ground-state (i.e. 𝑇 = 0 K) properties of tight-binding models, typically derived from
localized Wannier functions, with a given artificial broadening. We expect it to become a
widely used tool in the electronic structure community, providing accurate comparisons with
experimental spectra, and a robust, automated approach for high-throughput screenings and
machine learning of material properties.

Statement of need
Most open-source software packages used for density functional theory plus dynamical mean-
field theory, including those compatible with Wannier90 (see, e.g., Refs. (Aichhorn et al.,
2016; Romero et al., 2020; Shinaoka et al., 2021; Singh et al., 2021)), employ simple
uniform grids for BZ integration, despite the fact that BZ integrands may be highly localized,
e.g., near energy isosurfaces for the Green’s function. However, these details of electronic
structure may sensitively control downstream observables, so it is crucial that BZ integrals
be computed in a resolved manner in material-realistic calculations. In practice, this requires
using dense uniform integration grids, which become compute or memory-limited in low-
temperature calculations involving scattering rates approaching the meV scale. Furthermore,
validating uniform integration methods requires careful convergence testing which is not always
prioritized, sometimes leading to under-resolved results with spurious features. The algorithms
in AutoBZ.jl, which include an optimized uniform grid integration scheme for larger scattering
rates, automate convergence testing to provide results to a user-specified error tolerance. For
low-temperature calculations, our adaptive integration algorithm has only polylogarithmic
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computational complexity with respect to the scattering rate, superior to the polynomial
rates of alternative tree-based adaptive methods. These advancements will be crucial for the
development of next-generation quantum impurity solvers and the accurate characterization of
spectral features for low-temperature phenomena in condensed matter physics.

Design principles
AutoBZ.jl is developed in a modular, Julian fashion involving several components required
for integration (Van Muñoz, 2023a) and interpolation (Van Muñoz, 2023c, 2023b) which
may be of independent interest in other scientific computing applications. It also contains
an extension to SymmetryReduceBZ.jl (Jorgensen et al., 2022) for optimizations involving
the lattice symmetry group, including an implementation of a symmetric Monkhorst-Pack
grid using the algorithm of Hart et al. (Hart et al., 2019). We use the CommonSolve.jl
interface to promote interoperability with existing packages. For example, we provide a routine
to compute the electron density that can easily be combined with NonlinearSolve.jl(Pal et
al., 2024) to determine the chemical potential. AutoBZ.jl can be called from MATLAB and
Python, and includes file-based interfaces to read Wannier90 output, such as Hamiltonian and
position operator matrix elements, as well as frequency-dependent self-energy data determined
either phenomenologically or using a quantum many-body framework. The modular design of
AutoBZ.jl simplifies the addition of new algorithms and problem types, and its interoperatibility
and well-documented API enables its use as a scripting tool for many research problems.

Figure 1: Calculations of various physical observables for a 3-band model of 𝑡2𝑔 orbitals in the cubic
perovskite SrVO3 at a temperature of 24 K, using a Fermi liquid scaling for the scattering rate, which
is 1 meV. Panel (a) shows the density of states (DOS) as a function of frequency and panel (b)
shows the optical conductivity as a function of excitation frequency at a chemical potential of 12.5 eV.
AutoBZ.jl was used to compute the observables at automatically-selected interpolation nodes determined
by HChebinterp.jl, yielding a result which can be evaluated on the full domain. We compare the resolved
results obtained using adaptive integration with the result of uniform grid integration with 𝑁𝑘 momentum
space points per dimension.
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