DOI: 10.21105/joss.07063

Software
= Review @@
= Repository @
= Archive &7

Editor: Rohit Goswami 7
Reviewers:

= @benlansdell

The Journal of Open Source Software

gotranx: General ODE translator

Henrik Finsberg©®!Y and Johan Hake?

1 Simula Research Laboratory, Oslo, Norway 2 Oslo Katedralskole, Oslo, Norway § Corresponding author

Summary

We introduce gotranx, a General ODE Translator for automatic code generation of ordinary
differential equations (ODEs). The user writes the ODE in a markup language with the file
extension .ode and the tool generates code with numerical schemes for solving the ODE in
different programming languages.

gotranx implements a domain specific language (DSL) using Lark for representing ODEs. It
can parse the variables and equations into a symbolic representation (Meurer et al., 2017), and

generate numerical schemes based on codeprinters from Sympy, in particular the Rush-Larsen
scheme (Rush & Larsen, 1978) which is very popular in the field of computational biology.

@, gotranx

= Qayush9pandey
= @SunnyXu

Submitted: 01 July 2024
Published: 17 October 2024

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Figure 1: Logo of the software that illustrates that you taka a dynamical system (i.e an ODE) and uses
gotranx (i.e a black box) to turn the ODE into computer code

The vision for gotranx is to implement the same features in gotranx as found in gotran along
with additional features.

Statement of need

Systems of ordinary differential equations (ODEs) are equations of the form

y'(t) = f(ty),

where t represents time and y is a vector of state variables. These equations are a fundamental
concept in mathematics and science, and play a critical role in various fields such as physics,
engineering, and economics.

Solving ODEs can be done analytically in simple cases but for most real world applications one
needs to apply numerical methods (Ascher & Petzold, 1998). For this, a suite of well-established
software exists, such as scipy (Virtanen et al., 2020) for Python, Differentialequations.jl
(Rackauckas & Nie, 2017) for Julia, and Sundials (Hindmarsh et al., 2005) for C and C++ .

Finsberg, & Hake. (2024). gotranx: General ODE translator. Journal of Open Source Software, 9(102), 7063. https://doi.org/10.21105/joss.07063. 1


https://orcid.org/0000-0001-6489-8858
https://doi.org/10.21105/joss.07063
https://github.com/openjournals/joss-reviews/issues/7063
https://github.com/finsberg/gotranx
https://doi.org/https://dx.doi.org/10.5281/zenodo.13940990
https://rgoswami.me
https://orcid.org/0000-0002-2393-8056
https://github.com/benlansdell
https://github.com/ayush9pandey
https://github.com/SunnyXu
https://creativecommons.org/licenses/by/4.0/
https://github.com/lark-parser/lark
https://github.com/ComputationalPhysiology/gotran
https://doi.org/10.21105/joss.07063

The Journal of Open Source Software

Computational biology is one field where ODEs play an essential role, for example in models of
heart cells. The resulting ODEs can, in these cases, be quite involved with many parameters
and state variables. For example, one of the more recent models of human heart cells (Tomek
et al., 2019) has 112 parameters, 45 state variables, and 276 intermediate variables. Solutions
of the state equations of these membrane models typically allows for specialized exponential
integrators (Rush & Larsen, 1978) that are implemented as a numerical scheme in gotranx.

Furthermore, such models of a single heart cell are typically embedded into a spatial model,
such as the Monodomain or Bidomain model (Sundnes et al., 2007), where each point in a 3D
geometry represents a cell. This means that thousands or even millions of such ODEs needs
to be coupled and solved in a larger systems. In these cases, traditional solvers are usually
unsuitable and custom code are often developed to solve the ODEs. An alternative to this
approach is to use an existing framework specialized for these types of problems (Cooper et
al., 2020; Plank et al., 2021). However, introducing a big framework might not be ideal if
the user wants to do a lot of customization. With gotranx you can easily generate framework
independent code that can easily be integrated into most simulation pipelines. One example
is fenics-beat (Finsberg, 2024), which uses gotranx to generate code solving ODEs in a
Monodomain model.

While such models are typically developed in one programming language, different research
groups use different programming languages to integrate and solve their models. To make
these models programming language independent, it is common practice to write them in a
markup language (Keating et al., 2020; Lloyd et al., 2004). However, when translating the
models to a new programming language, user typically need to do this manually, which is likely
to introduce errors in the code. Since gotranx also implements converters, e.g., for CellML
through MyoKit (Clerx et al., 2016), it already supports most models that are used today.

gotranx is a full rewrite of gotran, which was first developed in 2012, primarily for generating
code for solving problems in cardiac electrophysiology. gotran is very tightly coupled to sympy
and at one point we were unable to upgrade the version of sympy, which drastically limited
its usage. This was the main motivation for the upgrade. You can read more about this
background in the documentation.

Features
The core idea behind gotranx is

1. to define your ODE in a high level language (so called .ode file), and
2. to generate code for solving the ODE in different programming languages

The .ode format is text based and high level stripped for details. For example the following
.ode file

states(x=1, y=0)

parameters(a=1.0)

dx_dt
dy_dt

a*xy
-X

defines the ODE system

dx
a Y
dy
E——.T

with the initial conditions z(0) = 1 and y(0) = 0 and the parameter a with a value of 1.0.
We can now generate code for solving the ODE using the Generalized Rush-Larsen scheme

Finsberg, & Hake. (2024). gotranx: General ODE translator. Journal of Open Source Software, 9(102), 7063. https://doi.org/10.21105/joss.07063. 2


https://github.com/finsberg/fenics-beat
https://github.com/ComputationalPhysiology/gotran
https://www.sympy.org/en/index.html
https://finsberg.github.io/gotranx/docs/history.html
https://doi.org/10.21105/joss.07063

The Journal of Open Source Software

(Sundnes et al., 2009) with the following command (assuming you wrote the ODE in the file
file.ode)

gotranx ode2py file.ode --scheme generalized_rush_larsen -o file.py

which will output the code a new python file named file.py. We can now use this code as
follows to solve the ODE

import file as model
import numpy as np
import matplotlib.pyplot as plt

s = model.init_state_values() 1.00 4

p = model.init_parameter_values() /
dt = le-4 #.0.1 ms 0.75 4

T =2 % np.pi

t = np.arange(@, T, dt)

0.50

x_index = model.state_index("x")
x = [s[x_index]]
y_index = model.state_index("y")
y = [s[y_index]]

0.25 1

0.00 4

State variables

for ti in t[1:]: —0.251

s = model.generalized_rush_larsen(s, ti, dt, p)
x.append (s [x_index])
y.append(s[y_index])

—0.50 A

—-0.75 A

fig, ax = plt.subplots()
ax.plot(t, x, label="x") —1.00 1 - Y

ax.plot(t, y, label="y") 6 i é é :; é é,
ax.set_xlabel("Time [s]")
ax.set_ylabel("State variables")
ax. legend()

plt.show()

Time [s]

Figure 2: Example of code from loading and solving an ODE with the code generated from gotranx. On
the right we see the solution.

At the time of writing, gotranx support code generation to C and Python, with backends
for numpy and jax. It also supports conversion to and from CellML via MyoKit (at the time
of writing we still do not support unit conversion from gotranx to MyoKit). For a list of all
features and the roadmap, please see the roadmap.

Acknowledgements

Henrik Finsberg is the main developer of gotranx. The original gotran library was created
by Johan Hake, and he is acknowledged with co-authorship for this. We would also like to
acknowledge Kristian Hustad for valuable discussions and contributions to the original gotran
library. This work has been financially supported by Simula Research Laboratory.

References

Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations
and differential-algebraic equations. SIAM. https://doi.org/10.1137/1.9781611971224

Clerx, M., Collins, P., De Lange, E., & Volders, P. G. (2016). Myokit: A simple interface to
cardiac cellular electrophysiology. Progress in Biophysics and Molecular Biology, 120(1-3),
100-114. https://doi.org/10.1016/j.pbiomolbio.2015.12.008

Cooper, F. R., Baker, R. E., Bernabeu, M. O., Bordas, R., Bowler, L., Bueno-Orovio, A.,
Byrne, H. M., Carapella, V., Cardone-Noott, L., Jonatha, C., & others. (2020). Chaste:
Cancer, heart and soft tissue environment. Journal of Open Source Software, 5(47).
https://doi.org/10.21105/joss.01848

Finsberg, & Hake. (2024). gotranx: General ODE translator. Journal of Open Source Software, 9(102), 7063. https://doi.org/10.21105/joss.07063. 3


https://numpy.org
https://jax.readthedocs.io/
https://www.cellml.org
https://myokit.org
https://finsberg.github.io/gotranx/docs/roadmap.html
https://doi.org/10.1137/1.9781611971224
https://doi.org/10.1016/j.pbiomolbio.2015.12.008
https://doi.org/10.21105/joss.01848
https://doi.org/10.21105/joss.07063

The Journal of Open Source Software

Finsberg, H. (2024). fenics-beat (Version 0.1.1). https://doi.org/10.5281/zenodo.13323643

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,
& Woodward, C. S. (2005). SUNDIALS: Suite of nonlinear and differential /algebraic
equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3), 363-396.
https://doi.org/10.1145/1089014.1089020

Keating, S. M., Waltemath, D., Kénig, M., Zhang, F., Drager, A., Chaouiya, C., Bergmann, F.
T., Finney, A., Gillespie, C. S., Helikar, T., & others. (2020). SBML level 3: An extensible
format for the exchange and reuse of biological models. Molecular Systems Biology, 16(8),
€9110. https://doi.org/10.15252/msb.20199110

Lloyd, C. M., Halstead, M. D., & Nielsen, P. F. (2004). CellML: Its future, present and past.
Progress in Biophysics and Molecular Biology, 85(2-3), 433-450. https://doi.org/10.1016/
j-pbiomolbio.2004.01.004

Meurer, A., Smith, C. P., Paprocki, M., Certik, O., Kirpichev, S. B., Rocklin, M., Kumar, A.,
Ivanov, S., Moore, J. K., Singh, S., & others. (2017). SymPy: Symbolic computing in
Python. PeerJ Computer Science, 3, €103. https://doi.org/10.7717 /peerj-cs.103

Plank, G., Loewe, A., Neic, A., Augustin, C., Huang, Y.-L., Gsell, M. A., Karabelas, E.,
Nothstein, M., Prassl, A. J., Sanchez, J., & others. (2021). The openCARP simulation
environment for cardiac electrophysiology. Computer Methods and Programs in Biomedicine,
208, 106223. https://doi.org/10.1016/j.cmpb.2021.106223

Rackauckas, C., & Nie, Q. (2017). Differentialequations.jl — a performant and feature-rich
ecosystem for solving differential equations in julia. Journal of Open Research Software,
5(1), 15-15. https://doi.org/10.5334 /jors.151

Rush, S., & Larsen, H. (1978). A practical algorithm for solving dynamic membrane equations.
IEEE Transactions on Biomedical Engineering, 4, 389-392. https://doi.org/10.1109/
TBME.1978.326270

Sundnes, J., Artebrant, R., Skavhaug, O., & Tveito, A. (2009). A second-order algorithm for
solving dynamic cell membrane equations. IEEE Transactions on Biomedical Engineering,
56(10), 2546-2548. https://doi.org/10.1109/TBME.2009.2014739

Sundnes, J., Lines, G. T., Cai, X., Nielsen, B. F., Mardal, K.-A., & Tveito, A. (2007).
Computing the electrical activity in the heart (Vol. 1). Springer Science & Business Media.
https://doi.org/10.1007 /3-540-33437-8

Tomek, J., Bueno-Orovio, A., Passini, E., Zhou, X., Minchole, A., Britton, O., Bartolucci, C.,
Severi, S., Shrier, A., Virag, L., & others. (2019). Development, calibration, and validation
of a novel human ventricular myocyte model in health, disease, and drug block. Elife, 8,
€48890. https://doi.org/10.7554 /eLife.48890

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3),
261-272. https://doi.org/10.1038/s41592-019-0686-2

Finsberg, & Hake. (2024). gotranx: General ODE translator. Journal of Open Source Software, 9(102), 7063. https://doi.org/10.21105/joss.07063. 4


https://doi.org/10.5281/zenodo.13323643
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.15252/msb.20199110
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/j.cmpb.2021.106223
https://doi.org/10.5334/jors.151
https://doi.org/10.1109/TBME.1978.326270
https://doi.org/10.1109/TBME.1978.326270
https://doi.org/10.1109/TBME.2009.2014739
https://doi.org/10.1007/3-540-33437-8
https://doi.org/10.7554/eLife.48890
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.07063

	Summary
	Statement of need
	Features

	Acknowledgements
	References

