
MicroFloatingPoints.jl: providing very small
IEEE 754-compliant floating-point types
Frédéric Goualard 1

1 Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes, France
DOI: 10.21105/joss.07050

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @matbesancon
• @dannys4
• @mkitti

Submitted: 23 July 2024
Published: 18 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The IEEE 754 standard defines the representation and the properties of the floating-point
numbers used as surrogates for reals in computer programs. Most programming languages
only support the 32-bit (Float32) and 64-bit (Float64) formats implemented in hardware.
Machine learning, computer graphics, and numerical algorithms analysis all have a need for
smaller formats, which are often neither supported in hardware, nor are they available as
established types in programming languages. The MicroFloatingPoints.jl Julia library offers
a parametric type that can be instantiated to compute with IEEE 754-compliant floating-point
numbers with varying ranges and precisions (up to and including Float32). It also provides
the programmer with various means to visualize what is computed.

Statement of need
Proving the properties of numerical algorithms involving floating-point numbers can be a
very challenging task. Insight can often be gained by systematically executing the algorithm
under study for all possible inputs. There are, however, too many values to consider with
the classically available types Float32 and Float64. Hence there is a need for libraries that
offer many smaller IEEE 754-compliant types to play with. SIPE (Lefèvre, 2013), FloatX
(Flegar et al., 2019), and CPFloat (Fasi & Mikaitis, 2023), to name a few, are such libraries.
However, being written in languages such as C or C++, they lack the interactivity and tight
integration with graphical facilities that can be obtained from using script languages such as
Julia. MicroFloatingPoints.jl is a Julia library that fills this need by offering a parametric
type, Floatmu, that can be instantiated to simulate in software small floating-point types:
Floatmu{8,23} is a type using 8 bits to represent the exponent and 23 bits for the fractional
part, which is equivalent to Float32; Floatmu{8,7} is equivalent to the Google Brain bfloat16

format, …

A quick tour
To obtain a (pseudo-)random float in the domain [0, 1) for a floating-point format with a 𝑝-bit
significand, many libraries simply divide a pseudo-random integer taken from [0, 2𝑝 − 1] by 2𝑝
(Goualard, 2020). Does this ensure an even distribution of the bits in the fractional parts of the
random floats, as required by applications such as differential privacy (Dwork, 2006; Mironov,
2012)? This can be systematically and quickly checked for a small floating-point format. We
start by loading MicroFloatingPoints and PyPlot (alternatively, PythonPlot could also be
used) for the graphics:

using MicroFloatingPoints, PyPlot

and we define a new IEEE 754-compliant floating-point type, say, with 7 bits for the exponent
and 9 bits for the significand (i.e., 8 bits for the fractional part):

Goualard. (2024). MicroFloatingPoints.jl: providing very small IEEE 754-compliant floating-point types. Journal of Open Source Software, 9(101),
7050. https://doi.org/10.21105/joss.07050.

1

https://orcid.org/0000-0002-1798-1568
https://doi.org/10.21105/joss.07050
https://github.com/openjournals/joss-reviews/issues/7050
https://github.com/goualard-f/MicroFloatingPoints.jl.git
https://doi.org/10.5281/zenodo.13777404
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/matbesancon
https://github.com/dannys4
https://github.com/mkitti
https://creativecommons.org/licenses/by/4.0/
https://github.com/goualard-f/MicroFloatingPoints.jl
https://julialang.org/
https://julialang.org/
https://doi.org/10.21105/joss.07050


const E = 7 # Size of the exponent part

const f = 8 # Size of the fractional part

const p = f+1 # Size of the significand

const MuFP = Floatmu{E,f} # New IEEE 754 type

We now divide all integers in [0, 2𝑝 − 1] by 2𝑝 to obtain a MuFP float, for which we record the
value of each bit of its fractional part. An array T with f cells will accumulate the number
of occurrences of a ‘1’ over all floats produced (specifically, T[i] will contain the number of
times the (f-i)-th bit of the fractional part was a ‘1’ so far—with the zeroth bit being the
rightmost one, as usual).

T = zeros(UInt32, f)

for v in 0:(2^p-1)

d = MuFP(v)/2^p

fpart = bitstring(d)[2+E:end] # Isolating the fractional part

for j in 1:f

global T[j] += Int(fpart[j] == '1')

end

end

We now normalize to [0, 1] the number of occurrences, and display the results with a bar plot
(Figure 1).

nT = map(x -> x/2^p,T)

plt.bar(1:f,nT)

plt.xticks(1:f,reverse(map((x)->string(x-1),1:f)))

plt.yticks(0:0.1:1)

Figure 1: Probability of being ‘1’ for each bit of the fractional part of a Floatmu{7,8} when dividing
each integer in [0, 29 − 1] by 29.

We were expecting a probability of 0.5 for each bit of the fractional part to be 1. The actual
plot shows that this is not the case and that the probability decreases for the lowest bits. It is
very easy to check that behavior for a larger type by, e.g., changing the value of f to ‘16’ in
our previous code and reexecuting the script. The result in Figure 2 exhibits the same behavior
for the larger type Floatmu{7,16}.

Goualard. (2024). MicroFloatingPoints.jl: providing very small IEEE 754-compliant floating-point types. Journal of Open Source Software, 9(101),
7050. https://doi.org/10.21105/joss.07050.

2

https://doi.org/10.21105/joss.07050


Figure 2: Probability of being ‘1’ for each bit of the fractional part of a Floatmu{7,16} when dividing
each integer in [0, 217 − 1] by 217.

Limitations
At present, all computations are performed in double precision (the Float64 type), then
correctly rounded to the Floatmu{} format chosen. As long as the precision of the Floatmu{}

type is at most half the one of Float64, there is no double rounding issue (Martin-Dorel et
al., 2013), and any final result obtained in that way is exactly the same as the one we would
obtain by computing directly with the Floatmu{} precision (Rump, 2016).

Small floating-point formats are increasingly used in machine learning algorithms, where the
precision and range are less important than the capability to store and manipulate as many
values as possible. There are already some established formats implemented in hardware
(e.g., IEEE 754 Float16, available natively in Julia, and Google Brain bfloat16, provided
by the Julia Package BFloat16s.jl). There is, however, still a need for more flexibility to
test the behavior of algorithms with varying precisions and ranges. The parametric type of
MicroFloatingPoints.jl can be put to good use there too, and has already been for the study
of training neural networks (Arthur et al., 2023). However, since it represents all floating-point
formats by a pair of 32 bit integers, it cannot compete with more specialized packages for
applications that require storing and manipulating massive amounts of numbers. For such use
cases, it should therefore be confined to preliminary investigations with more limited amounts
of data.

Acknowledgments
The reviewers and the editor for JOSS suggested many improvements to both the manuscript
and the library itself during the reviewing process, which significantly increased their quality.

References
Arthur, B. J., Kim, C. M., Chen, S., Preibisch, S., & Darshan, R. (2023). A scalable

implementation of the recursive least-squares algorithm for training spiking neural networks.
Frontiers in Neuroinformatics, 17. https://doi.org/10.3389/fninf.2023.1099510

Goualard. (2024). MicroFloatingPoints.jl: providing very small IEEE 754-compliant floating-point types. Journal of Open Source Software, 9(101),
7050. https://doi.org/10.21105/joss.07050.

3

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://github.com/JuliaMath/BFloat16s.jl
https://doi.org/10.3389/fninf.2023.1099510
https://doi.org/10.21105/joss.07050


Dwork, C. (2006). Differential privacy. In M. Bugliesi, B. Preneel, V. Sassone, & I. Wegener
(Eds.), Automata, languages and programming (pp. 1–12). Springer. https://doi.org/10.
1007/11787006_1

Fasi, M., & Mikaitis, M. (2023). CPFloat: A C library for simulating low-precision arithmetic.
ACM Transactions on Mathematical Software, 49(2), 18:1–18:32. https://doi.org/10.
1145/3585515

Flegar, G., Scheidegger, F., Novaković, V., Mariani, G., Tomás, A. E., Malossi, A. C. I.,
& Quintana-Ortí, E. S. (2019). FloatX: A C++ library for customized floating-point
arithmetic. ACM Transactions on Mathematical Software, 45(4), 1–23. https://doi.org/
10.1145/3368086

Goualard, F. (2020). Generating random floating-point numbers by dividing integers: A
case study. In V. Krzhizhanovskaya (Ed.), Proceedings of the international conference
on computational science (Vol. 12138, pp. 15–28). Springer. https://doi.org/10.1007/
978-3-030-50417-5_2

Lefèvre, V. (2013). SIPE: Small integer plus exponent. Proceedings of the 2013 IEEE 21st
Symposium on Computer Arithmetic, 99–106. https://doi.org/10.1109/ARITH.2013.22

Martin-Dorel, É., Melquiond, G., & Muller, J.-M. (2013). Some issues related to dou-
ble rounding. BIT Numerical Mathematics, 53(4), 897–924. https://doi.org/10.1007/
s10543-013-0436-2

Mironov, I. (2012). On significance of the least significant bits for differential privacy. Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security - CCS
’12, 650–661. https://doi.org/10.1145/2382196.2382264

Rump, S. M. (2016). IEEE754 precision-𝑘 base-𝛽 arithmetic inherited by precision-𝑚 base-𝛽
arithmetic for 𝑘 < 𝑚. ACM Transactions on Mathematical Software, 43(3), 20:1–20:15.
https://doi.org/10.1145/2785965

Goualard. (2024). MicroFloatingPoints.jl: providing very small IEEE 754-compliant floating-point types. Journal of Open Source Software, 9(101),
7050. https://doi.org/10.21105/joss.07050.

4

https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1145/3585515
https://doi.org/10.1145/3585515
https://doi.org/10.1145/3368086
https://doi.org/10.1145/3368086
https://doi.org/10.1007/978-3-030-50417-5_2
https://doi.org/10.1007/978-3-030-50417-5_2
https://doi.org/10.1109/ARITH.2013.22
https://doi.org/10.1007/s10543-013-0436-2
https://doi.org/10.1007/s10543-013-0436-2
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2785965
https://doi.org/10.21105/joss.07050

	Summary
	Statement of need
	A quick tour
	Limitations

	Acknowledgments
	References

