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Summary
The IEEE 754 standard defines the representation and the properties of the floating-point
numbers used as surrogates for reals in computer programs. Most programming languages
only support the 32-bit (Float32) and 64-bit (Float64) formats implemented in hardware.
Machine learning, computer graphics, and numerical algorithms analysis all have a need for
smaller formats, which are often neither supported in hardware, nor are they available as
established types in programming languages. The MicroFloatingPoints.jl Julia library offers
a parametric type that can be instantiated to compute with IEEE 754-compliant floating-point
numbers with varying ranges and precisions (up to and including Float32). It also provides
the programmer with various means to visualize what is computed.

Statement of need
Proving the properties of numerical algorithms involving floating-point numbers can be a
very challenging task. Insight can often be gained by systematically executing the algorithm
under study for all possible inputs. There are, however, too many values to consider with
the classically available types Float32 and Float64. Hence there is a need for libraries that
offer many smaller IEEE 754-compliant types to play with. SIPE (Lefèvre, 2013), FloatX
(Flegar et al., 2019), and CPFloat (Fasi & Mikaitis, 2023), to name a few, are such libraries.
However, being written in languages such as C or C++, they lack the interactivity and tight
integration with graphical facilities that can be obtained from using script languages such as
Julia. MicroFloatingPoints.jl is a Julia library that fills this need by offering a parametric
type, Floatmu, that can be instantiated to simulate in software small floating-point types:
Floatmu{8,23} is a type using 8 bits to represent the exponent and 23 bits for the fractional
part, which is equivalent to Float32; Floatmu{8,7} is equivalent to the Google Brain bfloat16

format, …

A quick tour
To obtain a (pseudo-)random float in the domain [0, 1) for a floating-point format with a 𝑝-bit
significand, many libraries simply divide a pseudo-random integer taken from [0, 2𝑝 − 1] by 2𝑝
(Goualard, 2020). Does this ensure an even distribution of the bits in the fractional parts of the
random floats, as required by applications such as differential privacy (Dwork, 2006; Mironov,
2012)? This can be systematically and quickly checked for a small floating-point format. We
start by loading MicroFloatingPoints and PyPlot (alternatively, PythonPlot could also be
used) for the graphics:

using MicroFloatingPoints, PyPlot

and we define a new IEEE 754-compliant floating-point type, say, with 7 bits for the exponent
and 9 bits for the significand (i.e., 8 bits for the fractional part):
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const E = 7 # Size of the exponent part

const f = 8 # Size of the fractional part

const p = f+1 # Size of the significand

const MuFP = Floatmu{E,f} # New IEEE 754 type

We now divide all integers in [0, 2𝑝 − 1] by 2𝑝 to obtain a MuFP float, for which we record the
value of each bit of its fractional part. An array T with f cells will accumulate the number
of occurrences of a ‘1’ over all floats produced (specifically, T[i] will contain the number of
times the (f-i)-th bit of the fractional part was a ‘1’ so far—with the zeroth bit being the
rightmost one, as usual).

T = zeros(UInt32, f)

for v in 0:(2^p-1)

d = MuFP(v)/2^p

fpart = bitstring(d)[2+E:end] # Isolating the fractional part

for j in 1:f

global T[j] += Int(fpart[j] == '1')

end

end

We now normalize to [0, 1] the number of occurrences, and display the results with a bar plot
(Figure 1).

nT = map(x -> x/2^p,T)

plt.bar(1:f,nT)

plt.xticks(1:f,reverse(map((x)->string(x-1),1:f)))

plt.yticks(0:0.1:1)

Figure 1: Probability of being ‘1’ for each bit of the fractional part of a Floatmu{7,8} when dividing
each integer in [0, 29 − 1] by 29.

We were expecting a probability of 0.5 for each bit of the fractional part to be 1. The actual
plot shows that this is not the case and that the probability decreases for the lowest bits. It is
very easy to check that behavior for a larger type by, e.g., changing the value of f to ‘16’ in
our previous code and reexecuting the script. The result in Figure 2 exhibits the same behavior
for the larger type Floatmu{7,16}.
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Figure 2: Probability of being ‘1’ for each bit of the fractional part of a Floatmu{7,16} when dividing
each integer in [0, 217 − 1] by 217.

Limitations
At present, all computations are performed in double precision (the Float64 type), then
correctly rounded to the Floatmu{} format chosen. As long as the precision of the Floatmu{}

type is at most half the one of Float64, there is no double rounding issue (Martin-Dorel et
al., 2013), and any final result obtained in that way is exactly the same as the one we would
obtain by computing directly with the Floatmu{} precision (Rump, 2016).

Small floating-point formats are increasingly used in machine learning algorithms, where the
precision and range are less important than the capability to store and manipulate as many
values as possible. There are already some established formats implemented in hardware
(e.g., IEEE 754 Float16, available natively in Julia, and Google Brain bfloat16, provided
by the Julia Package BFloat16s.jl). There is, however, still a need for more flexibility to
test the behavior of algorithms with varying precisions and ranges. The parametric type of
MicroFloatingPoints.jl can be put to good use there too, and has already been for the study
of training neural networks (Arthur et al., 2023). However, since it represents all floating-point
formats by a pair of 32 bit integers, it cannot compete with more specialized packages for
applications that require storing and manipulating massive amounts of numbers. For such use
cases, it should therefore be confined to preliminary investigations with more limited amounts
of data.
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