
TrixiParticles.jl: Particle-based multiphysics simulation
in Julia
Niklas S. Neher 1*, Erik Faulhaber 2*, Sven Berger 3*, Gregor J.
Gassner 2, and Michael Schlottke-Lakemper 4

1 High-Performance Computing Center Stuttgart, University of Stuttgart, Germany 2 Department of
Mathematics and Computer Science, University of Cologne, Germany 3 Institute of Surface Science,
Helmholtz-Zentrum hereon, Germany 4 High-Performance Scientific Computing, University of Augsburg,
Germany * These authors contributed equally.

DOI: 10.21105/joss.07044

Software
• Review
• Repository
• Archive

Editor: Rohit Goswami
Reviewers:

• @luraess
• @giordano

Submitted: 03 July 2024
Published: 27 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
TrixiParticles.jl is a Julia-based open-source package for particle-based multiphysics simulations
and part of the Trixi Framework (Schlottke-Lakemper et al., 2021). It handles complex
geometries and specialized applications, such as computational fluid dynamics (CFD) and
structural dynamics, by providing a versatile platform for particle-based methods. TrixiParti-
cles.jl allows for the straightforward addition of new particle systems and their interactions,
facilitating the setup of coupled multiphysics simulations such as fluid-structure interaction
(FSI). Furthermore, simulations are set up directly with Julia code, simplifying the integration
of custom functionalities and promoting rapid prototyping.

Here, we give a brief overview of the software package TrixiParticles.jl, starting with the
scientific background before going on to describe the functionality and benefit in more detail.
Finally, exemplary results and implemented features are briefly presented.

Statement of need
Numerical simulations, such as CFD, structural mechanics, thermodynamics, and magneto-
hydrodynamics, pose several challenges when simulating real-world problems. For example,
they involve complex geometries, free surfaces, deformable boundaries, and moving material
interfaces, as well as the coupling of multiple systems with different mathematical models.

One way to address these challenges is to use particle-based methods, in which the particles
either represent physical particles or mathematical interpolation points. The former case refers
to methods that model separate, discrete particles with rotational degrees of freedom such
as the Discrete Element Method (DEM) proposed by Cundall & Strack (1979), whereas the
latter case refers to methods such as Smoothed Particle Hydrodynamics (SPH), which is
a numerical discretization method for solving problems in continuum mechanics. SPH was
originally developed by Gingold & Monaghan (1977) to simulate astrophysical applications and
is now widely used to simulate CFD, structural mechanics, and even heat conduction problems.

The Lagrangian formalism in particle-based methods allows particles to move along a velocity
field without any connection to neighboring particles, thus eliminating the need for a mesh to
discretize the simulation domain. This mesh-free approach simplifies the preprocessing, making
it particularly suitable for simulating complex geometries and also facilitates simulations of
large deformations and movements. By representing each material with its own set of particles,
coupling multiple different physical systems into a single multiphysics setup is straightforward.
In addition, particle-based methods are inherently suited to simulating free surfaces, material
interfaces, and moving boundaries.

Neher et al. (2025). TrixiParticles.jl: Particle-based multiphysics simulation in Julia. Journal of Open Source Software, 10(105), 7044.
https://doi.org/10.21105/joss.07044.

1

https://orcid.org/0009-0004-2472-0923
https://orcid.org/0000-0001-9788-5949
https://orcid.org/0000-0001-6083-7038
https://orcid.org/0000-0002-1752-1158
https://orcid.org/0000-0002-3195-2536
https://doi.org/10.21105/joss.07044
https://github.com/openjournals/joss-reviews/issues/7044
https://github.com/trixi-framework/TrixiParticles.jl
https://doi.org/10.5281/zenodo.14680972
https://rgoswami.me
https://orcid.org/0000-0002-2393-8056
https://github.com/luraess
https://github.com/giordano
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07044


There are several open-source software projects specialized for SPH methods, including Dual-
SPHysics (Domıńguez et al., 2021), SPlisHSPlasH (Bender & others, 2024), and SPHinXsys
(Zhang et al., 2021), written in C++, and PySPH (Prabhu Ramachandran et al., 2021),
written in Python. These software packages utilize the advantages of the SPH methods to
simulate problems such as FSI and free surfaces (O’Connor & Rogers, 2021) or complex
geometries (Laha et al., 2024).

TrixiParticles.jl is written in the Julia programming language and combines the advantage of
easy and rapid prototyping with the ability for high-performance computing using multicore
parallelization and hardware accelerators. It provides support for developing and testing new
SPH methods and also for simulating and coupling other particle-based methods such as DEM.
Since simulations are configured and set up using only Julia code, custom methods or particle
interactions can be added without modifying the original source code.

Overview of particle-based simulation
In TrixiParticles.jl, particles of a single particle-based method, e.g., SPH or DEM, are grouped
into a system. The interaction between two particles is defined entirely by the types of their
systems. This approach makes it easy to support new methods and different physics by adding
a new system and defining its pairwise interaction with other systems.

Figure 1: Particles of two different systems 𝒮1 and 𝒮2 in a simulation domain. The black and gray
dashed circles represent the search radii for neighbors of particles 𝑎 and 𝑏, respectively.

To illustrate this, Figure 1 depicts particles within a simulation domain. The black particles
belong to system 𝒮1 and the gray particles belong to system 𝒮2. In general, the force 𝑓𝑎
experienced by a particle 𝑎 is calculated as

𝑓𝑎 = ∑
𝑏∈𝒮1

𝑓𝒮1
𝑎𝑏 + ∑

𝑏∈𝒮2

𝑓𝒮2
𝑎𝑏 +⋯+ ∑

𝑏∈𝒮𝑛

𝑓𝒮𝑛
𝑎𝑏 ,

where the interaction force 𝑓𝒮𝑖
𝑎𝑏 that particle 𝑎 experiences due to particle 𝑏 depends on the

system type of particle 𝑎, the system type 𝒮𝑖 of particle 𝑏, and the relative particle distance.
For computational efficiency, only particles with a distance within a system-dependent search
radius interact with each other.

For example, the SPH method determines the force between two SPH particles according to
Monaghan (2005) as

𝑓𝑎𝑏 = −𝑚𝑎𝑚𝑏 (
𝑝𝑎
𝜌2𝑎

+ 𝑝𝑏
𝜌2𝑏

)∇𝑎𝑊𝑎𝑏 +Π𝑎𝑏,

where 𝑚𝑎, 𝑚𝑏, 𝜌𝑎, 𝜌𝑏, 𝑝𝑎, 𝑝𝑏 are the mass, density, and pressure of particles 𝑎 and 𝑏, respectively.
The last term Π𝑎𝑏 includes dissipative terms such as artificial viscosity (Monaghan, 2005) and
is scheme-specific. The weighting function 𝑊𝑎𝑏, also called kernel-function, depends on the
relative distance between particles 𝑎 and 𝑏.

Neher et al. (2025). TrixiParticles.jl: Particle-based multiphysics simulation in Julia. Journal of Open Source Software, 10(105), 7044.
https://doi.org/10.21105/joss.07044.

2

https://doi.org/10.21105/joss.07044


Code structure
Figure 2 depicts the basic building blocks of TrixiParticles.jl. A simulation essentially consists of
spatial discretization (left block) and time integration (center block). For the latter, the Julia
package OrdinaryDiffEq.jl is used. The callbacks (right block) provide additional functionality
and communicate with the time integration method during the simulation.

The semidiscretization couples the systems of a simulation and also manages the corresponding
neighborhood searches for each system. The resulting ordinary differential equation (ODE)
problem is then fed into the time integrator and is solved by an appropriate numerical time
integration scheme.

Figure 2: Main building blocks of TrixiParticles.jl.

Features
At the time of writing, the following feature highlights are available in TrixiParticles.jl:

• Fluid Systems
– Weakly compressible SPH (WCSPH): Standard SPH method originally developed

by Gingold & Monaghan (1977) to simulate astrophysics applications.
– Entropically damped artificial compressibility (EDAC) for SPH: As opposed to the

WCSPH scheme, which uses an equation of state, this scheme uses a pressure
evolution equation to calculate the pressure, which was derived by Clausen (2013)
and adapted to SPH by P. Ramachandran & Puri (2019).

• Structure Systems
– Total lagrangian SPH (TLSPH): Method to simulate elastic structures where all

quantities are calculated with respect to the initial configuration (O’Connor &
Rogers, 2021).

– DEM: Discretization of granular matter or bulk material into a finite set of distinct,
interacting mass elements (Bićanić, 2004; Cundall & Strack, 1979).

• Boundary Systems
– Boundary system with several boundary models, where each model follows a different

interaction rule.
– Open boundary system to simulate non-reflecting (open) boundary conditions

(Lastiwka et al., 2009).
• Correction methods and models

– Density diffusion (Antuono et al., 2010)
– Transport-velocity formulation (TVF) (Adami et al., 2013)
– Intra-particle-force surface tension (Akinci et al., 2013)

• Performance and parallelization

Neher et al. (2025). TrixiParticles.jl: Particle-based multiphysics simulation in Julia. Journal of Open Source Software, 10(105), 7044.
https://doi.org/10.21105/joss.07044.

3

https://github.com/SciML/OrdinaryDiffEq.jl
https://doi.org/10.21105/joss.07044


– Shared memory parallelism using multithreading
– Highly optimized neighborhood search providing various approaches
– GPU support

TrixiParticles.jl is open source and available under the MIT license at GitHub, along with
detailed documentation on how to use it. Additionally, we provide tutorials explaining how
to set up a simulation of fluid flows, structure mechanics, or FSI. A collection of simulation
setups to get started with can be found in the examples directory.

As one of the validation examples, Figure 3 compares SPH results of TrixiParticles.jl and
O’Connor & Rogers (2021) against benchmark data from the finite element simulation of
Turek & Hron (2007). The plots show the y-deflection of the tip of a beam oscillating under
its own weight. The results obtained with TrixiParticles.jl match those of O’Connor & Rogers
(2021) well.

Figure 3: Comparison of TrixiParticles.jl and O’Connor & Rogers (2021) against Turek & Hron (2007):
Tip y-deflection of an oscillating beam with different resolutions, where 𝑡𝑠 is the thickness of the beam
and 𝑑𝑝 is the particle spacing.

Figure 4 illustrates an exemplary simulation result, where an elastic sphere, modeled with
TLSPH, falls into a tank filled with water, modeled by WCSPH.

Neher et al. (2025). TrixiParticles.jl: Particle-based multiphysics simulation in Julia. Journal of Open Source Software, 10(105), 7044.
https://doi.org/10.21105/joss.07044.

4

https://github.com/trixi-framework/TrixiParticles.jl
https://trixi-framework.github.io/TrixiParticles.jl/stable/
https://doi.org/10.21105/joss.07044


Figure 4: TrixiParticles.jl simulation of an elastic sphere falling into a water tank. Left: Results rendered
with blender. Right: Underlying particle representation.

Acknowledgements
Sven Berger acknowledges funding from hereon and HiRSE. Michael Schlottke-Lakemper and
Gregor Gassner receive funding through the DFG research unit FOR 5409 “Structure-Preserving
Numerical Methods for Bulk- and Interface Coupling of Heterogeneous Models (SNuBIC)”
(project number 463312734).

References
Adami, s., Hu, X. Y., & Adams, N. A. (2013). A transport-velocity formulation for smoothed

particle hydrodynamics. Journal of Computational Physics, 241. https://doi.org/10.1016/
j.jcp.2013.01.043

Akinci, N., Akinci, G., & Teschner, M. (2013). Versatile surface tension and adhesion for SPH
fluids. ACM Trans. Graph., 32(6). https://doi.org/10.1145/2508363.2508395

Antuono, M., Colagrossi, A., Marrone, S., & Molteni, D. (2010). Free-surface flows solved by
means of SPH schemes with numerical diffusive terms. Computer Physics Communications,
181. https://doi.org/10.1016/j.cpc.2009.11.002

Bender, J., & others. (2024). SPlisHSPlasH library. https://github.com/InteractiveComputerGraphics/
SPlisHSPlasH

Bićanić, N. (2004). Discrete element methods. In Encyclopedia of Computational Mechanics.
Wiley. https://doi.org/10.1002/0470091355.ecm006.pub2

Clausen, J. R. (2013). Entropically damped form of artificial compressibility for explicit
simulation of incompressible flow. Physical Review E, 87. https://doi.org/10.1103/
physreve.87.013309

Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies.
Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47

Domıńguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., Garcıá-Feal,
O., Martıńez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D.,

Neher et al. (2025). TrixiParticles.jl: Particle-based multiphysics simulation in Julia. Journal of Open Source Software, 10(105), 7044.
https://doi.org/10.21105/joss.07044.

5

https://www.hereon.de/
https://www.helmholtz-hirse.de/
https://snubic.io/
https://doi.org/10.1016/j.jcp.2013.01.043
https://doi.org/10.1016/j.jcp.2013.01.043
https://doi.org/10.1145/2508363.2508395
https://doi.org/10.1016/j.cpc.2009.11.002
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://doi.org/10.1002/0470091355.ecm006.pub2
https://doi.org/10.1103/physreve.87.013309
https://doi.org/10.1103/physreve.87.013309
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.21105/joss.07044


Stansby, P. K., & Gómez-Gesteira, M. (2021). DualSPHysics: From fluid dynamics
to multiphysics problems. Computational Particle Mechanics, 9(5), 867–895. https:
//doi.org/10.1007/s40571-021-00404-2

Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and
application to non-spherical stars. Monthly Notices of The Royal Astronomical Society,
181. https://doi.org/10.1093/mnras/181.3.375

Laha, S., Fourtakas, G., Das, P. K., & Keshmiri, A. (2024). Smoothed particle hydrodynamics
based FSI simulation of the native and mechanical heart valves in a patient-specific aortic
model. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-57177-w

Lastiwka, M., Basa, M., & Quinlan, N. J. (2009). Permeable and non-reflecting boundary
conditions in SPH. International Journal for Numerical Methods in Fluids, 61. https:
//doi.org/10.1002/fld.1971

Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on Progress in Physics,
68. https://doi.org/10.1088/0034-4885/68/8/r01

O’Connor, J., & Rogers, B. D. (2021). A fluid–structure interaction model for free-surface
flows and flexible structures using smoothed particle hydrodynamics on a GPU. Journal of
Fluids and Structures, 104. https://doi.org/10.1016/j.jfluidstructs.2021.103312

Ramachandran, Prabhu, Bhosale, A., Puri, K., Negi, P., Muta, A., Dinesh, A., Menon, D.,
Govind, R., Sanka, S., Sebastian, A. S., Sen, A., Kaushik, R., Kumar, A., Kurapati, V.,
Patil, M., Tavker, D., Pandey, P., Kaushik, C., Dutt, A., & Agarwal, A. (2021). PySPH:
A Python-based framework for smoothed particle hydrodynamics. ACM Transactions on
Mathematical Software, 47 (4), 1–38. https://doi.org/10.1145/3460773

Ramachandran, P., & Puri, K. (2019). Entropically damped artificial compressibility for SPH.
Computers and Fluids, 179. https://doi.org/10.1016/j.compfluid.2018.11.023

Schlottke-Lakemper, M., Gassner, G. J., Ranocha, H., Winters, A. R., & Chan, J. (2021).
Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs in Julia. https:
//doi.org/10.5281/zenodo.3996439

Turek, S., & Hron, J. (2007). Proposal for numerical benchmarking of fluid-structure interaction
between an elastic object and laminar incompressible flow. In Fluid-structure interaction.
Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-34596-5_15

Zhang, C., Rezavand, M., Zhu, Y., Yu, Y., Wu, D., Zhang, W., Wang, J., & Hu, X.
(2021). SPHinXsys: An open-source multi-physics and multi-resolution library based
on smoothed particle hydrodynamics. Computer Physics Communications, 267, 108066.
https://doi.org/10.1016/j.cpc.2021.108066

Neher et al. (2025). TrixiParticles.jl: Particle-based multiphysics simulation in Julia. Journal of Open Source Software, 10(105), 7044.
https://doi.org/10.21105/joss.07044.

6

https://doi.org/10.1007/s40571-021-00404-2
https://doi.org/10.1007/s40571-021-00404-2
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1038/s41598-024-57177-w
https://doi.org/10.1002/fld.1971
https://doi.org/10.1002/fld.1971
https://doi.org/10.1088/0034-4885/68/8/r01
https://doi.org/10.1016/j.jfluidstructs.2021.103312
https://doi.org/10.1145/3460773
https://doi.org/10.1016/j.compfluid.2018.11.023
https://doi.org/10.5281/zenodo.3996439
https://doi.org/10.5281/zenodo.3996439
https://doi.org/10.1007/3-540-34596-5_15
https://doi.org/10.1016/j.cpc.2021.108066
https://doi.org/10.21105/joss.07044

	Summary
	Statement of need
	Overview of particle-based simulation
	Code structure
	Features

	Acknowledgements
	References

