
BlueCelluLab: Biologically Detailed Neural Network
Experimentation API
Anıl Tuncel1, Werner Van Geit1,3, Mike Gevaert1, Benjamin
Torben-Nielsen1,4, Darshan Mandge1, İlkan Kılıç1, Aurélien Jaquier1, Eilif
Muller1,5,6, Lida Kanari1, and Henry Markram1,2

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva,
Switzerland 2 Laboratory of Neural Microcircuitry (LNMC), Brain Mind Institute, School of Life
Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland 3 Present
address -> Foundation for Research on Information Technologies in Society (IT’IS), Zurich 8004,
Switzerland 4 Present address -> Roche Information Solutions, F. Hoffmann-La Roche AG, Basel,
Switzerland 5 Present address -> Université de Montréal, CHU Ste-Justine Research Center
(Architectures of Biological Learning Lab), Montréal, Canada 6 Present address -> Mila Quebec AI
Institute, Montréal, Canada

DOI: 10.21105/joss.07026

Software
• Review
• Repository
• Archive

Editor: Beatriz Costa Gomes
Reviewers:

• @finsberg
• @ryEllison

Submitted: 19 June 2024
Published: 17 August 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The NEURON simulator, established in 1984 and continuously developed since, stands as
the preeminent tool for neuron simulation within computational neuroscience. Its widespread
adoption and compatibility with computational clusters and supercomputers underscore its
pivotal role in large-scale neuronal research. However, its integration with the Python pro-
gramming language has introduced complexities, particularly concerning memory management
and object lifecycle. To conceal these challenges from the user and seamlessly interface
with community standards for neural network representation data formats such as SONATA,
we introduce BlueCelluLab. The high-level Python API simplifies the execution of neural
simulations, ranging from single neurons to intricate networks, by managing complexities
related to memory management and object lifecycle, thus providing a streamlined experience
for users. Today, BlueCelluLab is powering various Python packages, command line interfaces,
web applications, and data analysis workflows.

Statement of Need
The NEURON simulator has been a cornerstone in computational neuroscience for decades and
is now the most frequently used neuron simulator in the field (Tikidji-Hamburyan et al., 2017).
The NEURON simulator is renowned for its high efficiency in running large-scale simulations
and maintains strong compatibility with computational clusters and modern supercomputer
architectures, making it well-suited for utilisation across parallel computing environments (Awile
et al., 2022; Kumbhar et al., 2019).

Initially, the NEURON simulator was programmed using the hoc (higher order calculator)
interpreted programming language (Kernighan & Pike, 1984). Years later, a Python interface
was developed to facilitate communication with the NEURON simulator, making it accessible
to Python users (Hines et al., 2009). The NEURON package, though resembling a typical
Python package and importable like many others, exhibits significant operational differences.
One major difference is that the scope and lifetime of NEURON objects do not align with
those of typical Python objects. If not properly managed, these discrepancies can lead to
memory safety vulnerabilities that compromise system security, consume excessive resources,

Tuncel et al. (2024). BlueCelluLab: Biologically Detailed Neural Network Experimentation API. Journal of Open Source Software, 9(100), 7026.
https://doi.org/10.21105/joss.07026.

1

https://doi.org/10.21105/joss.07026
https://github.com/openjournals/joss-reviews/issues/7026
https://github.com/BlueBrain/BlueCelluLab
https://doi.org/10.5281/zenodo.13325726
www.costa-gomes.com
https://orcid.org/0000-0002-1073-8442
https://github.com/finsberg
https://github.com/ryEllison
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07026


and potentially corrupt scientific results. This places an undue burden on scientists to manage
technical details beyond their experimental focus.

Moreover there is a need for an interface that can load and simulate neural networks from
the SONATA data format (Dai et al., 2020) jointly developed by the Allen Institute and the
Blue Brain Project. BlueCelluLab’s API supports loading and simulating SONATA networks
with the NEURON simulator, offering a highly configurable environment. Users can load the
entire network or selectively load subsets tailored to specific scientific inquiries. For example, if
a study focuses on the behavior of a particular neuronal electrical type, users can select and
simulate only those specific neurons from the SONATA network.

BlueCelluLab complements the Blue Brain Project’s large-scale simulator neurodamus (Pereira
et al., 2024), which runs NEURON simulations in parallel using MPI. This integration allows
for efficient replay simulations in BlueCelluLab, where researchers can adjust neuron properties
and rerun parts of simulations generated by neurodamus. This method saves resources and
enables the observation of how changes in a neuron or group of neurons influence their behavior
within the entire network.

System Overview

Figure 1: Architecture of BlueCelluLab

The system overview, as illustrated in Figure 1, shows that BlueCelluLab is built on top of
the NEURON Python package, providing a high-level API tailored for the common use cases
of single neuron or neural network simulations. The figure depicts the key components and
interactions within BlueCelluLab, highlighting the modular design that facilitates integration
and extension.

BlueCelluLab employs an IsolatedProcess mechanism to run simulations in separate processes
when required. For example, prior to simulating neurons, users may need to conduct preliminary
simulations to calculate specific properties of the neurons that will be utilised during the main
simulation.

The network representation in BlueCelluLab is not confined to the SONATA format. With the
use of dependency inversion principle (Martin, 2003), any network format that implements the
CircuitAccess interface is seamlessly supported without requiring any integration effort at the
API level. Currently, there are two distinct implementations available: one for SONATA and
another for an internal format used by the Blue Brain Project.

Tuncel et al. (2024). BlueCelluLab: Biologically Detailed Neural Network Experimentation API. Journal of Open Source Software, 9(100), 7026.
https://doi.org/10.21105/joss.07026.

2

https://doi.org/10.21105/joss.07026


External systems, such as other Python packages, web backends, CLIs, or software workflows,
interact with the high-level API without needing to know its detailed implementation, thus
embodying the principle of information hiding (Parnas, 1972).

BlueCelluLab covers common error scenarios to prevent crashes and improve user experience,
enhancing system robustness significantly. Additionally, it is designed to fail gracefully in cases
of misusage, further safeguarding against disruptions and maintaining a smooth operational
flow.

The code snippet below demonstrates the initialisation and execution of a neural simulation
using BlueCelluLab.

from bluecellulab.cell import create_ball_stick

from bluecellulab import Simulation

cell = create_ball_stick()

sim = Simulation()

sim.add_cell(cell)

stimulus = cell.add_step(start_time=5.0, stop_time=20.0, level=0.5)

sim.run(25)

time, voltage = cell.get_time(), cell.get_soma_voltage()

A neuron model is created using the create_ball_stick function, representing a basic type of
neuron model. A simulation environment is initialised with Simulation(), and the created cell is
added to this environment using sim.add_cell(cell). Next, a stimulus is attached to the neuron,
activating it between 5.0 ms and 20.0 ms with a stimulation level of 0.5 nA (nanoamperes).
The simulation is run for a total of 25 ms. Finally, time and soma voltage data are retrieved
for further analysis and visualisation.

BlueCelluLab interfaces with various type systems, including those from Python, NEURON,
network data formats, and dependencies such as numeric computing or data frame packages.
To ensure type safety, it employs PEP-484 type annotations (Van Rossum et al., 2014) and
a static type checker (Lehtosalo et al., 2017) for early error detection during static analysis.
For dynamic input lacking type information at static time, BlueCelluLab uses the Pydantic
Data Validation package (Colvin et al., 2024) to identify errors at runtime, thereby enhancing
system robustness.

Tuncel et al. (2024). BlueCelluLab: Biologically Detailed Neural Network Experimentation API. Journal of Open Source Software, 9(100), 7026.
https://doi.org/10.21105/joss.07026.

3

https://doi.org/10.21105/joss.07026


Figure 2: Applications

Figure 2: Illustrative examples of applications using bluecellulab: (A) Voltage recordings from
the soma and various apical dendrite sections of a simulated pyramidal neuron, showcasing
distinct potential changes across different cellular regions. (B) A graphical representation of a
neuronal network, where edge colours indicate connection strengths and node types correspond
to different neural subnetworks, such as the hippocampus and thalamus. (C) Responses of a
neuron to different step current injection. The left figure displays the injected current and the
right figure demonstrate variations in voltage behavior and spiking frequency relative to the
amplitude of the applied currents that are expressed as percentages of rheobase current of the
simulated neuron.

We believe that while BlueCelluLab is focused on computational neuroscience, the ideas
that shaped its design decisions will also prove beneficial in research software across various
multidisciplinary fields.

Acknowledgements

This study was supported by funding to the Blue Brain Project, a research center of the École
polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the
Swiss Federal Institutes of Technology.

References
Awile, O., Kumbhar, P., Cornu, N., Dura-Bernal, S., King, J. G., Lupton, O., Magkanaris,

I., McDougal, R. A., Newton, A. J. H., Pereira, F., Săvulescu, A., Carnevale, N. T.,
Lytton, W. W., Hines, M. L., & Schürmann, F. (2022). Modernizing the NEURON
simulator for sustainability, portability, and performance. Frontiers in Neuroinformatics, 16.
https://doi.org/10.3389/fninf.2022.884046

Colvin, S., Jolibois, E., Ramezani, H., Badaracco, A. G., Dorsey, T., Montague, D., Matveenko,
S., Trylesinski, M., Runkle, S., Hewitt, D., & Hall, A. (2024). Pydantic (Version v2.6.4).

Tuncel et al. (2024). BlueCelluLab: Biologically Detailed Neural Network Experimentation API. Journal of Open Source Software, 9(100), 7026.
https://doi.org/10.21105/joss.07026.

4

https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.21105/joss.07026


https://docs.pydantic.dev/latest/

Dai, K., Hernando, J., Billeh, Y. N., Gratiy, S. L., Planas, J., Davison, A. P., Dura-Bernal,
S., Gleeson, P., Devresse, A., Dichter, B. K., Gevaert, M., King, J. G., Geit, W. A. H.
van, Povolotsky, A. V., Muller, E., Courcol, J. D., & Arkhipov, A. (2020). The SONATA
data format for efficient description of large-scale network models. PLoS Computational
Biology, 16. https://doi.org/10.1371/journal.pcbi.1007696

Hines, M. L., Davison, A. P., & Muller, E. (2009). NEURON and python. Frontiers in
Neuroinformatics, 3. https://doi.org/10.3389/neuro.11.001.2009

Kernighan, B. W., & Pike, R. (1984). The UNIX programming environment (Vol. 270).
Prentice-Hall Englewood Cliffs, NJ. https://doi.org/10.1002/spe.4380090102

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., & Schürmann,
F. (2019). CoreNEURON : An optimized compute engine for the NEURON simulator.
Frontiers in Neuroinformatics, 13. https://doi.org/10.3389/fninf.2019.00063

Lehtosalo, J., Rossum, G. v, Levkivskyi, I., Sullivan, M. J., Fisher, D., Price, G., Lee, M.,
Seyfer, N., Barton, R., Ilinskiy, S., & others. (2017). Mypy-optional static typing for
python. URL: Https://Mypy-Lang.org.

Martin, R. C. (2003). Agile software development: Principles, patterns, and practices. Prentice
Hall PTR. https://doi.org/10.1002/pfi.21408

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15(12), 1053–1058. https://doi.org/10.1007/978-3-642-59412-0_
26

Pereira, F., Ji, W., Magkanaris, I., Alonso, J. B., Kumbhar, P., Săvulescu, A., Heeren, E.,
Sergio, Bellotta, A., delalondre, fabien, Wolf, M., Geit, W. V., Lupton, O., Grosheintz,
L., Temerev, A., Cornu, N., Awile, O., fschuerm, JCGoran, … bbp-hpcteam. (2024).
BlueBrain/neurodamus: 3.1.0 (Version 3.1.0). Zenodo. https://doi.org/10.5281/zenodo.
10809263

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., & El-Ghazawi, T. A. (2017). Software
for brain network simulations: A comparative study. Frontiers in Neuroinformatics, 11.
https://doi.org/10.3389/fninf.2017.00046

Van Rossum, G., Lehtosalo, J., & Langa, L. (2014). Pep 484–type hints. Index of Python
Enhancement Proposals.

Tuncel et al. (2024). BlueCelluLab: Biologically Detailed Neural Network Experimentation API. Journal of Open Source Software, 9(100), 7026.
https://doi.org/10.21105/joss.07026.

5

https://docs.pydantic.dev/latest/
https://doi.org/10.1371/journal.pcbi.1007696
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1002/spe.4380090102
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1002/pfi.21408
https://doi.org/10.1007/978-3-642-59412-0_26
https://doi.org/10.1007/978-3-642-59412-0_26
https://doi.org/10.5281/zenodo.10809263
https://doi.org/10.5281/zenodo.10809263
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.21105/joss.07026

	Summary
	Statement of Need
	System Overview
	Acknowledgements
	References

