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Summary
In computational digital pathology, accurate nuclear segmentation of Hematoxylin and Eosin
(H&E) stained whole slide images (WSIs) is a critical step for many analyses and tissue
characterizations. One popular deep learning-based nuclear segmentation approach, Hover-
Net (Graham et al., 2019), offers remarkably accurate results but lacks the high-throughput
performance needed for clinical deployment in resource-constrained settings. Our approach,
HoverFast, aims to provide fast and accurate nuclear segmentation in H&E images using
knowledge distillation from HoverNet. By redesigning the tool with software engineering best
practices, HoverFast introduces advanced parallel processing capabilities, efficient data han-
dling, and optimized postprocessing. These improvements facilitate scalable high-throughput
performance, making HoverFast more suitable for real-time analysis and application in resource-
limited environments. Using a consumer grade Nvidia A5000 GPU, HoverFast showed a 21x
speed improvement as compared to HoverNet; reducing mean analysis time for 40x WSIs
from ~2 hours to 6 minutes while retaining a concordant mean Dice score of 0.91 against the
original HoverNet output. Peak memory usage was also reduced 71% from 44.4GB, to 12.8GB,
without requiring SSD-based caching. To ease adoption in research and clinical contexts,
HoverFast aligns with best-practices in terms of (a) installation, and (b) containerization, while
(c) providing outputs compatible with existing popular open-source image viewing tools such
as QuPath (Bankhead et al., 2017). HoverFast has been made open-source and is available at
andrewjanowczyk.com/open-source-tools/hoverfast.

Statement of need
The increasing popularity of digitized pathology images in both research and clinical practice
has spurred the widespread adoption of deep learning (DL) approaches for automating various
tasks, with nuclear segmentation standing out as a crucial step in many analyses. This
segmentation process involves delineating the contours of cell nuclei within a 2D whole slide
image (WSI). Nuclei, rather than complete cells, are targeted due to strong contrast afforded
by routinely employed hematoxylin staining. Hematoxylin’s selective affinity for nucleic acids
results in the distinct visualization of nuclei in purple, facilitating their clear identification
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amidst less prominently stained cytoplasm and other cellular constituents. Given the small
size of nuclei, their segmentation typically takes place at 40x magnification (~0.25 microns
per pixel (mpp)); the highest magnification supported by most current digital slide scanners.
Working at this scale can be time-intensive for algorithms, especially on consumer grade GPUs,
as WSIs are especially large, reaching up to 120,000x120,000 pixels. While several existing
tools like StarDist (Schmidt et al., 2018) (Weigert et al., 2020) and CellPose (Stringer et al.,
2021) have been developed to tackle the challenge of nuclear segmentation, HoverNet(Graham
et al., 2019) has emerged as one of the leading solutions in terms of segmentation accuracy,
particularly for its application to H&E-stained tissue.

Despite its accurate results, HoverNet remains resource-intensive and time-consuming due
to its high model parameter count and lengthy post-processing steps. HoverNet additionally
requires significant SSD storage for caching during runtime, often reaching over 120GB per
WSI. These properties make it challenging to deploy in more resource limited settings such as
consumer grade workstations or in clinical environments requiring high-throughput processing.
Therefore, there is an emerging need for a fast, accurate, and computationally efficient tool
that can make large-scale nuclear segmentation more accessible for both research and clinical
applications.

Motivated by the need for accurate yet efficient nuclear segmentation, we introduce HoverFast.
This tool replicates the output of the established HoverNet model while achieving superior
computational efficiency. HoverFast achieves this through knowledge distillation, a technique
where a smaller “student” model (HoverFast) learns to capture the knowledge from a larger
“teacher” model (HoverNet). The goal is to enable the student model to achieve comparable
performance to that of the teacher model, while requiring significantly less computational
resources for inference (Hinton et al., 2015), (Hu et al., 2022).

To facilitate the knowledge distillation process, HoverFast presents a training pipeline, using
HoverNet output as ground truth (see Figure 1), that enables the resulting model to have 30
times fewer parameters. As implemented, HoverFast provides:

• A containerized docker script to generate HoverNet ground truth on user-provided data
• A training pipeline for a custom HoverFast model
• Alternatively, a pre-trained cross-organ model for inference
• An inference pipeline for tiles and WSIs with tissue masks to delineate area of computation
• Compressed JSON output file directly compatible with QuPath
• A speedup of 21x over HoverNet, on consumer-grade compute infrastructure
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Figure 1: Overview of training pipeline for HoverFast. H&E tiles are segmented using HoverNet. The
nuclei masks, as well as the original H&E tiles, are passed to the smaller HoverFast architecture for
training. The resulting HoverFast model provides a highly optimized inference and post-processing
framework that can then be used for nuclear segmentation on WSIs with a 21x speed improvement over
HoverNet.

Implementation

Inference
HoverFast has a command-line interface (CLI) written in Python 3.11 and utilizes the PyTorch
framework (Paszke et al., 2017). We replicated the structure of the HoverNet model as
described by Graham et al (Graham et al., 2019) without the nuclear classification branch. For
the backbone, we used a modified 940k parameter Multi-scale UNet (Su et al., 2021) in place
of HoverNet’s 33.6 million parameter ResNet50, yielding a reduction in model parameter count
by a factor of 30 (see Appendix 1).

HoverFast’s post-processing pipeline was heavily optimized using scikit-image’s (Walt et al.,
2014) regionprops and watershed functions to effectively identify and split merged cells. To
improve throughput after batch model inference, regions are processed in parallel using a “multi-
worker, single writer” approach. This involves each worker independently (a) post-processing
its assigned region, and then (b) generating nuclei polygon coordinates using OpenCV (Bradski,
2000), before (c) sending to the single writing process for saving as a QuPath (Bankhead
et al., 2017) compatible gzip-compressed JSON file. A Docker and Singularity container of
HoverFast are provided.

Training
To help users train their own models, we provide a Docker container with HoverNet installed,
and a script that (a) accepts a directory of WSIs (or tiles), (b) randomly extracts a user-specified
number of tiles, (c) employs HoverNet on these tiles to generate labeled masks of nuclei, and
finally (d) saves the original images and associated masks into two PyTables files, one for
training and one for validation. HoverFast can then accept these PyTables files as arguments in
its training script to yield a use-case specific model. We employ knowledge distillation during
HoverFast training using the same loss function as HoverNet. The teacher model, HoverNet,
guides the student model, HoverFast, by providing the ground truth binary mask as target.
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Additionally, HoverFast learns to reproduce the horizontal and vertical distance maps allowing
HoverFast to inherit HoverNet’s post-processing abilities for separating touching nuclei.

Experiments

Experiment 1: Comparison of HoverNet and HoverFast on a cross organ
dataset
Employing n=97 WSIs of diverse tissue types, from The Cancer Genome Atlas (TCGA)
(Weinstein et al., 2013), 15 randomly selected tiles of 1,024x1,024 pixels from each WSI were
extracted. A HoverFast model was then trained as described in Training, for 100 epochs with
a batch size of 16. For validation, 74 tiles of 1,024x1,024 pixels from 14 slides of diverse
tissue types were used. Inference using both HoverNet and HoverFast was performed on the
validation tiles, and the binary masks of predicted cell nuclei were overlapped to obtain a Dice
score between the two tools. The resulting Dice score of 0.91 appears concordant with the
qualitative results (see Figure 2); these show very similar segmentation results, with HoverFast
able to segment slightly more faint nuclei than HoverNet.

Figure 2: (A) 1,024x1,024 tile of H&E tissue. (B) Overlay of binary masks. Pixels in white are predicted
by both models, with those in green/pink predicted only by HoverFast/HoverNet, respectively. For this
patch, the Dice score is 0.91. Here we can generally see that while HoverFast detects more nuclei, those
predictions remain reasonable and clearly visible on H&E, suggesting a potentially higher quality result.

Experiment 2: Comparison of HoverNet, cross-tissue HoverFast, and site-
specific HoverFast
From n=54 melanoma samples, (a) for training: 20 1,024x1,024 tiles were randomly selected
per slide from within available tumor masks, and (b) for validation: 50 tiles of 1,024x1,024
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from 8 slides were selected. For evaluation, 3 models were compared: (i) HoverNet, as a
baseline, (ii) the HoverFast model trained in Experiment 1, and (iii) a melanoma specific model
trained following the procedure in Training. The HoverFast models had Dice scores of 0.88
and 0.91 respectively against HoverNet, with qualitative results indicating a high degree of
similarity. There were slight changes on nuclei edges and faint nuclei (see Figure 3), with a
systematic superiority for the tissue-specific output. Taken together, the increased accuracy in
the melanoma specific model demonstrates that investing in training a dataset-specific model
appears to provide added value.

Figure 3: (A) 1,024x1,024 tile of H&E tissue (top) with a higher magnification region of interest (bottom).
(B) Overlay of binary masks for the single tissue model. Pixels in white are predicted by both models,
with those in green/pink predicted only by HoverFast/HoverNet, respectively. (C) Overlay of binary mask
for the cross-tissue model. The tissue specific model shows a closer resemblance to HoverNet in terms of
cell outlines.

Experiment 3: Benchmarks comparing processing time and memory footprint
To compare computational speed, n=4 slides from TCGA with corresponding tissue masks
generated with HistoQC (Janowczyk et al., 2019) were analyzed on a machine with a 16 core
Intel(R) Core(TM) i9-12900K CPU, a Nvidia A5000 GPU with 24GB of VRAM, and 128Gb
of DDR5 RAM. For both HoverNet and HoverFast, the GPU batch size was set to maximize
GPU memory usage. For HoverNet, a batch size of 90 was used, with 20 CPU threads for
pre- and post-processing. Similarly, for HoverFast, a batch size of 11 and 20 CPU threads
were used. A mean speed improvement of 20.8x times (see Table 1) was demonstrated. The
maximum RAM consumption was reduced by 71% with 44.4 GB for HoverNet versus 12.8 GB
for HoverFast. Additionally, HoverNet required a peak of 118 GB of SSD space for its cache
during run-time, while HoverFast did not appear to require any.
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Table 1: Detailed table of computation time per slide for each tool with associated speedup

Slide ID HoverNet HoverFast Speedup
Slide 1 58mins 5s 3mins 1s 19.2x
Slide 2 1hr 11mins 38s 3mins 33s 20.2x
Slide 3 2hrs 55mins 24s 8mins 4s 21.7x
Slide 4 3hrs 4mins 25s 8mins 50s 20.9x
Total 8hrs 9mins 32s 23mins 28s 20.8x

Discussion and Conclusions:
HoverFast represents a practical solution to the challenge of nuclear segmentation in WSIs,
emphasizing speed, resource efficiency and local trainability. It distinguishes itself by providing
a significant speedup in processing time with a 21x improvement over HoverNet on consumer
grade hardware in addition to a more than 3x reduction in RAM footprint while also eliminating
hard-drive based caching. This efficiency is crucial for users with limited resources, enabling
faster analysis while retaining segmentation results highly comparable to those of HoverNet.
While a pre-trained cross-tissue model is provided with the software, if higher accuracy and
greater similarity to HoverNet is required, a cohort specific model should be trained. Additionally,
although HoverFast does have a built-in feature for tissue detection, we highly recommend the
use of quality control tools, such as HistoQC to obtain more robust tissue masks, thus avoiding
computation on artefactual regions and further reducing computation time. HoverFast is easy
to install and provides simple drag and drop output compatibility with QuPath. It is publicly
available for use and modification at andrewjanowczyk.com/open-source-tools/hoverfast.
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Appendix 1

The appendix presents a comparison between HoverFast and HoverNet architectures. This
information was produced using the Python Torchinfo Summary package. The first column
outlines the model architecture, while the second delves into the number of parameters for each
layer. It is noteworthy that HoverFast substantially smaller number of parameters (roughly 30
times fewer than HoverNet) which, along with the optimized post-processing and file handling,
translates to lower memory footprint and faster processing time. This enables HoverFast to
handle larger batches of data and allowing parallel post-processing computation, ultimately
leading to a well-suited tool for resource limited environments.
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