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Summary
DisCoTec is a C++ framework for the sparse grid combination technique (Griebel et al., 1992),
designed for massively parallel settings. It is implemented with shared-memory parallelism
via OpenMP and distributed-memory parallelism via MPI, and is intended to be used in
conjunction with existing simulation codes. For simulation codes that can handle nested
structured grids, little to no adaptation work is needed for use with the DisCoTec framework.
The combination technique with DisCoTec demonstrates its superiority in precision-per-memory
for higher-dimensional time-dependent simulations, such as high-fidelity plasma turbulence
simulations in four to six dimensions and even for simulations in two dimensions, improvements
can be observed (Pollinger et al., 2023).

A central part of the combination technique at scale is the transformation of grid coefficients
into a multi-scale basis. DisCoTec provides a selection of three different lifting wavelets for this
purpose: hierachical hat basis, biorthogonal, and fullweighting basis. In addition, any code that
can operate on nested structured grids can benefit from the model order reduction provided
by the underlying sparse grid approach used by DisCoTec, without requiring any multi-scale
operations. An additional feature of DisCoTec is the possibility of performing widely-distributed
simulations of higher-dimensional problems, where multiple High-Performance Computing
(HPC) systems collaborate to solve a joint simulation, as demonstrated in Pollinger et al.
(2024). Thus, DisCoTec can leverage the compute power and main memory of multiple
HPC systems, with comparatively low and manageable transfer costs due to the combination
technique.

Statement of need
Higher-dimensional problems (by which we mean more than three space dimensions and one
time dimension) quickly require infeasible amounts of computational resources such as memory
and core-hours as the problem size increases—they are haunted by the so-called ‘curse of
dimensionality’. An example of this are high-fidelity plasma turbulence simulations in the
field of confined fusion research. Currently employed approaches to this problem include
dimensionally-reduced models, such as gyrokinetics (Brizard & Hahm, 2007) (which may not
always be applicable), particle-in-cell methods (which suffer from inherent noise (Verboncoeur,
2005)), and restricting computations to a very limited resolution. A further—still developing
but very promising—approach to the problem is low-rank methods (Einkemmer & Joseph,
2021). Multi-scale (hierarchical) methods, such as the sparse grid combination technique
(CT) that DisCoTec employs, provide an alternative approach to addressing the curse of
dimensionality by considering only those resolutions where the highest amount of information
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is expected (Bungartz & Griebel, 2004). While some implementations of the CT are available,
there is currently no other implementation for parallel simulations that require distributed
computing. DisCoTec is a C++ framework for massively-parallel time-dependent problems
with the CT, which fills this gap.

Methods: Sparse grid combination technique and implementation
The sparse grid combination technique (with time-stepping) is a multi-scale approach for
solving higher-dimensional problems. Instead of solving the problem on one grid that is very
finely resolved in all dimensions, the problem is solved on the so-called ‘component grids’
that are all rather coarsely resolved—each of them differently in the different dimensions. For
instance, the following schematic shows a two-dimensional combination scheme, consisting of
seven component grids.
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Figure 1: Combination scheme in two dimensions with ⃗ℓmin = (2, 1) and ⃗ℓmax = (5, 4), periodic boundary
conditions. Figure first published in Pollinger (2024).

By updating each other’s information throughout the simulation, the component grids still
obtain an accurate solution of the overall problem (Griebel et al., 1992). This is enabled by
an intermedate transformation into a multi-scale (hierarchical) basis, and application of the
combination formula

𝑓 (s) = ∑
⃗ℓ∈ℐ

𝑐 ⃗ℓ𝑓 ⃗ℓ

where 𝑓 (s) is the sparse grid approximation, and 𝑓 ⃗ℓ are the component grid functions. The set
of all used levels ⃗ℓ is often called a combination scheme ℐ. In Figure 1, the coefficients 𝑐 ⃗ℓ are
−1 for the coarser component grids (red background) and 1 for the finer component grids
(orange background). In summary, each of the grids will run (one or more) time steps of the
simulation, then exchange information with the other grids, and repeat this process until the
simulation is finished.

DisCoTec provides the necessary infrastructure for the combination technique with a black-
box approach, enabling massive parallelism—suitable for existing distributed solvers that use
structured grids. An important feature is the usage of ‘process groups’, where multiple MPI
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ranks will collaborate on a set of component grids, and the solver’s existing parallelism can be
re-used. The process groups are displayed as 𝑝𝑔𝑖 in Figure 2.
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Figure 2: DisCoTec process groups: Each black square denotes one MPI rank. The ranks are grouped
into the so-called ‘process groups’. Distributed operations in DisCoTec require either communication in
the process group, or perpendicular to it—there is no need for global communication or synchronization,
which avoids a major scaling bottleneck. The manager rank is optional. Figure first published in Pollinger
(2024).

In addition, the number of process groups can be increased to leverage the combination
technique’s embarrassing parallelism in the solver time steps. In Figure 2, this would be
equivalent to adding more and more process groups to the right.

Using DisCoTec, kinetic simulations were demonstrated to scale up to hundreds of thousands
of CPU cores (Pollinger, 2024). By putting a special focus on saving memory, most of the
memory is available for use by the black-box solver, even at high core counts. In addition,
OpenMP parallelism can be used to further increase parallelism while being more lightweight
than MPI in terms of memory.

Through highly parallel I/O operations, DisCoTec can be used to perform simulations on
multiple High Performance Computing systems simultaneously, if there exists a tool for
sufficiently fast file transfer between the systems (Pollinger, 2024). The DisCoTec repository
contains example scripts and documentation for utilizing UFTP as an example of a transfer
tool, but the approach is not limited to UFTP.

DisCoTec provides a conveniently automated way of installation using a spack package (Gamblin
et al., 2015), which can be used to install DisCoTec and its whole dependency tree in an
automated manner optimized for HPC hardware.

State of the field
Besides DisCoTec there exist other frameworks that allow the usage of sparse grids and the
combination technique. We will give a brief overview and outline the differences and application
areas of the codes.

The C++ code SG++ (SG++ development team, 2018) provides a direct interface to sparse
grids and applying them to a variety of different tasks such as interpolation, quadrature,
optimization, PDEs, regression, and classification. With the help of wrappers, the framework
can be used from various other programming languages such as Python and Matlab. The
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code targets direct implementations within sparse grids and provides a basic implementation
of the combination technique. Although offering parallelization for some of the tasks, the code
mainly targets single-node computations.

The Sparse Grids Matlab Kit (Tamellini et al., 2024) by Piazzola and Tamellini was originally
designed for teaching purposes and uncertainty quantification with the combination technique
(Piazzola & Tamellini, 2024). It offers a user friendly MATLAB interface for the combination
technique. In addition, dimensional adaptivity is available for nested and non-nested sequences
of component grid collocation points. The code is designed for usage on a single node which
limits the parallelism to shared memory.

The sparseSpACE (Obersteiner, 2019) project offers different variants of the combination
technique including a spatially adaptive combination technique. It provides implementations
for various applications such as numerical integration, interpolation, uncertainty quantification,
sparse grid density estimation (for classification and clustering), regression, and PDE calcula-
tions. The code is completely written in Python and is mostly sequential. The main novelty of
this project is the possibility to add spatial adaptivity to the combination technique.

This demonstrates that there exist multiple codes for sparse grids and the combination technique.
However, DisCoTec is the only code that offers distributed parallelization with the combination
technique and has demonstrated that it can scale up to full supercomputers and beyond. In
addition, DisCoTec uses the most sophisticated approach to utilize the combination technique
with time-dependent PDEs by employing recombinations, which increases the overall numerical
accuracy (Pollinger et al., 2023).
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