
DisCoTec: Distributed higher-dimensional HPC
simulations with the sparse grid combination technique
Theresa Pollinger 3,1¶, Marcel Hurler1, Alexander Van Craen 1, Michael
Obersteiner2, and Dirk Pflüger 1

1 University of Stuttgart, Scientific Computing, Stuttgart, Germany 2 Technical University of Munich,
Chair of Scientific Computing, Munich, Germany 3 RIKEN Center for Computational Science (R-CCS),
Kobe, Japan ¶ Corresponding author

DOI: 10.21105/joss.07018

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @EmilyBourne
• @jakelangham

Submitted: 21 June 2024
Published: 26 February 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
DisCoTec is a C++ framework for the sparse grid combination technique (Griebel et al., 1992),
designed for massively parallel settings. It is implemented with shared-memory parallelism
via OpenMP and distributed-memory parallelism via MPI, and is intended to be used in
conjunction with existing simulation codes. For simulation codes that can handle nested
structured grids, little to no adaptation work is needed for use with the DisCoTec framework.
The combination technique with DisCoTec demonstrates its superiority in precision-per-memory
for higher-dimensional time-dependent simulations, such as high-fidelity plasma turbulence
simulations in four to six dimensions and even for simulations in two dimensions, improvements
can be observed (Pollinger et al., 2023).

A central part of the combination technique at scale is the transformation of grid coefficients
into a multi-scale basis. DisCoTec provides a selection of three different lifting wavelets for this
purpose: hierachical hat basis, biorthogonal, and fullweighting basis. In addition, any code that
can operate on nested structured grids can benefit from the model order reduction provided
by the underlying sparse grid approach used by DisCoTec, without requiring any multi-scale
operations. An additional feature of DisCoTec is the possibility of performing widely-distributed
simulations of higher-dimensional problems, where multiple High-Performance Computing
(HPC) systems collaborate to solve a joint simulation, as demonstrated in Pollinger et al.
(2024). Thus, DisCoTec can leverage the compute power and main memory of multiple
HPC systems, with comparatively low and manageable transfer costs due to the combination
technique.

Statement of need
Higher-dimensional problems (by which we mean more than three space dimensions and one
time dimension) quickly require infeasible amounts of computational resources such as memory
and core-hours as the problem size increases—they are haunted by the so-called ‘curse of
dimensionality’. An example of this are high-fidelity plasma turbulence simulations in the
field of confined fusion research. Currently employed approaches to this problem include
dimensionally-reduced models, such as gyrokinetics (Brizard & Hahm, 2007) (which may not
always be applicable), particle-in-cell methods (which suffer from inherent noise (Verboncoeur,
2005)), and restricting computations to a very limited resolution. A further—still developing
but very promising—approach to the problem is low-rank methods (Einkemmer & Joseph,
2021). Multi-scale (hierarchical) methods, such as the sparse grid combination technique
(CT) that DisCoTec employs, provide an alternative approach to addressing the curse of
dimensionality by considering only those resolutions where the highest amount of information

Pollinger et al. (2025). DisCoTec: Distributed higher-dimensional HPC simulations with the sparse grid combination technique. Journal of Open
Source Software, 10(106), 7018. https://doi.org/10.21105/joss.07018.

1

https://orcid.org/0000-0002-0186-4340
https://orcid.org/0000-0002-3336-7226
https://orcid.org/0000-0002-4360-0212
https://doi.org/10.21105/joss.07018
https://github.com/openjournals/joss-reviews/issues/7018
https://github.com/SGpp/DisCoTec/
https://doi.org/10.5281/zenodo.14920617
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/EmilyBourne
https://github.com/jakelangham
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07018


is expected (Bungartz & Griebel, 2004). While some implementations of the CT are available,
there is currently no other implementation for parallel simulations that require distributed
computing. DisCoTec is a C++ framework for massively-parallel time-dependent problems
with the CT, which fills this gap.

Methods: Sparse grid combination technique and implementation
The sparse grid combination technique (with time-stepping) is a multi-scale approach for
solving higher-dimensional problems. Instead of solving the problem on one grid that is very
finely resolved in all dimensions, the problem is solved on the so-called ‘component grids’
that are all rather coarsely resolved—each of them differently in the different dimensions. For
instance, the following schematic shows a two-dimensional combination scheme, consisting of
seven component grids.

cc
ℓ⃗
= 1

cc
ℓ⃗
= −1

ℓx

ℓmin
x = 2 ℓmax

x = 5

ℓy

ℓmin
y = 1

ℓmax
y = 4

Figure 1: Combination scheme in two dimensions with ⃗ℓmin = (2, 1) and ⃗ℓmax = (5, 4), periodic boundary
conditions. Figure first published in Pollinger (2024).

By updating each other’s information throughout the simulation, the component grids still
obtain an accurate solution of the overall problem (Griebel et al., 1992). This is enabled by
an intermedate transformation into a multi-scale (hierarchical) basis, and application of the
combination formula

𝑓 (s) = ∑
⃗ℓ∈ℐ

𝑐 ⃗ℓ𝑓 ⃗ℓ

where 𝑓 (s) is the sparse grid approximation, and 𝑓 ⃗ℓ are the component grid functions. The set
of all used levels ⃗ℓ is often called a combination scheme ℐ. In Figure 1, the coefficients 𝑐 ⃗ℓ are
−1 for the coarser component grids (red background) and 1 for the finer component grids
(orange background). In summary, each of the grids will run (one or more) time steps of the
simulation, then exchange information with the other grids, and repeat this process until the
simulation is finished.

DisCoTec provides the necessary infrastructure for the combination technique with a black-
box approach, enabling massive parallelism—suitable for existing distributed solvers that use
structured grids. An important feature is the usage of ‘process groups’, where multiple MPI

Pollinger et al. (2025). DisCoTec: Distributed higher-dimensional HPC simulations with the sparse grid combination technique. Journal of Open
Source Software, 10(106), 7018. https://doi.org/10.21105/joss.07018.

2

https://doi.org/10.21105/joss.07018


ranks will collaborate on a set of component grids, and the solver’s existing parallelism can be
re-used. The process groups are displayed as 𝑝𝑔𝑖 in Figure 2.

ng

np

...

pg2

...

pg1

. . .manager

more
pgs

larger
pgs

Figure 2: DisCoTec process groups: Each black square denotes one MPI rank. The ranks are grouped
into the so-called ‘process groups’. Distributed operations in DisCoTec require either communication in
the process group, or perpendicular to it—there is no need for global communication or synchronization,
which avoids a major scaling bottleneck. The manager rank is optional. Figure first published in Pollinger
(2024).

In addition, the number of process groups can be increased to leverage the combination
technique’s embarrassing parallelism in the solver time steps. In Figure 2, this would be
equivalent to adding more and more process groups to the right.

Using DisCoTec, kinetic simulations were demonstrated to scale up to hundreds of thousands
of CPU cores (Pollinger, 2024). By putting a special focus on saving memory, most of the
memory is available for use by the black-box solver, even at high core counts. In addition,
OpenMP parallelism can be used to further increase parallelism while being more lightweight
than MPI in terms of memory.

Through highly parallel I/O operations, DisCoTec can be used to perform simulations on
multiple High Performance Computing systems simultaneously, if there exists a tool for
sufficiently fast file transfer between the systems (Pollinger, 2024). The DisCoTec repository
contains example scripts and documentation for utilizing UFTP as an example of a transfer
tool, but the approach is not limited to UFTP.

DisCoTec provides a conveniently automated way of installation using a spack package (Gamblin
et al., 2015), which can be used to install DisCoTec and its whole dependency tree in an
automated manner optimized for HPC hardware.

State of the field
Besides DisCoTec there exist other frameworks that allow the usage of sparse grids and the
combination technique. We will give a brief overview and outline the differences and application
areas of the codes.

The C++ code SG++ (SG++ development team, 2018) provides a direct interface to sparse
grids and applying them to a variety of different tasks such as interpolation, quadrature,
optimization, PDEs, regression, and classification. With the help of wrappers, the framework
can be used from various other programming languages such as Python and Matlab. The

Pollinger et al. (2025). DisCoTec: Distributed higher-dimensional HPC simulations with the sparse grid combination technique. Journal of Open
Source Software, 10(106), 7018. https://doi.org/10.21105/joss.07018.

3

https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/discotec/package.py
https://doi.org/10.21105/joss.07018


code targets direct implementations within sparse grids and provides a basic implementation
of the combination technique. Although offering parallelization for some of the tasks, the code
mainly targets single-node computations.

The Sparse Grids Matlab Kit (Tamellini et al., 2024) by Piazzola and Tamellini was originally
designed for teaching purposes and uncertainty quantification with the combination technique
(Piazzola & Tamellini, 2024). It offers a user friendly MATLAB interface for the combination
technique. In addition, dimensional adaptivity is available for nested and non-nested sequences
of component grid collocation points. The code is designed for usage on a single node which
limits the parallelism to shared memory.

The sparseSpACE (Obersteiner, 2019) project offers different variants of the combination
technique including a spatially adaptive combination technique. It provides implementations
for various applications such as numerical integration, interpolation, uncertainty quantification,
sparse grid density estimation (for classification and clustering), regression, and PDE calcula-
tions. The code is completely written in Python and is mostly sequential. The main novelty of
this project is the possibility to add spatial adaptivity to the combination technique.

This demonstrates that there exist multiple codes for sparse grids and the combination technique.
However, DisCoTec is the only code that offers distributed parallelization with the combination
technique and has demonstrated that it can scale up to full supercomputers and beyond. In
addition, DisCoTec uses the most sophisticated approach to utilize the combination technique
with time-dependent PDEs by employing recombinations, which increases the overall numerical
accuracy (Pollinger et al., 2023).

Acknowledgements
This work was supported by the German Research Foundation (DFG) through the Priority
Programme 1648 Software for Exascale Computing (SPPEXA).

We acknowledge the support by the Stuttgart Center for Simulation Science (SimTech).

The authors gratefully acknowledge the scientific support and HPC resources provided by
the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project a105cb. NHR funding
is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded
by the German Research Foundation (DFG) — 440719683.

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time on the
GCS Supercomputers Hermit, Hornet, Hazel Hen, and Hawk at Höchstleistungsrechenzentrum
Stuttgart (www.hlrs.de). Simulations were performed on the national supercomputer HPE
Apollo Hawk at the High Performance Computing Center Stuttgart (HLRS) under the grant
number 42247.

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time on the
GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time on the
GCS Supercomputers SuperMUC and SuperMUC-NG at Leibniz Supercomputing Centre
(www.lrz.de).

We acknowledge contributions from Mario Heene, Christoph Kowitz, Alfredo Parra Hinojosa,
Johannes Rentrop, Keerthi Gaddameedi, Marvin Dostal, Marcel Breyer, Christoph Niethammer,
Philipp Offenhäuser, and support from HLRS, LRZ, JSC, and NHR@FAU, where we would like
to highlight the long-standing support by Martin Bernreuther and Martin Ohlerich in particular.

Pollinger et al. (2025). DisCoTec: Distributed higher-dimensional HPC simulations with the sparse grid combination technique. Journal of Open
Source Software, 10(106), 7018. https://doi.org/10.21105/joss.07018.

4

www.gauss-centre.eu
www.hlrs.de
www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de
https://doi.org/10.21105/joss.07018


References
Brizard, A. J., & Hahm, T. S. (2007). Foundations of nonlinear gyrokinetic theory. Reviews of

Modern Physics, 79(2), 421. https://doi.org/10.1103/revmodphys.79.421

Bungartz, H.-J., & Griebel, M. (2004). Sparse grids. Acta Numerica, 13, 147–269.

Einkemmer, L., & Joseph, I. (2021). A mass, momentum, and energy conservative dynamical
low-rank scheme for the Vlasov equation. Journal of Computational Physics, 443, 110495.
https://doi.org/10.1016/j.jcp.2021.110495

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., Supinski, B. R. de, &
Futral, S. (2015). The Spack package manager: Bringing order to HPC software chaos.
1–12. https://doi.org/10.1145/2807591.2807623

Griebel, M., Schneider, M., & Zenger, C. (1992). A combination technique for the solution of
sparse grid problems. In P. de Groen & R. Beauwens (Eds.), Iterative Methods in Linear
Algebra (pp. 263–281). IMACS, Elsevier, North Holland. https://ins.uni-bonn.de/media/
public/publication-media/griesiam.ps.gz

Obersteiner, M. (2019). sparseSpACE - the sparse grid spatially adaptive combination environ-
ment. In GitHub repository. GitHub. https://github.com/obersteiner/sparseSpACE

Obersteiner, M. (2021). A spatially adaptive and massively parallel implementation of the
fault-tolerant combination technique [PhD thesis, Technische Universität München]. https:
//mediatum.ub.tum.de/doc/1613369/1613369.pdf

Piazzola, C., & Tamellini, L. (2024). Algorithm 1040: The sparse grids Matlab kit - a
Matlab implementation of sparse grids for high-dimensional function approximation and
uncertainty quantification. ACM Transactions on Mathematical Software, 50(1). https:
//doi.org/10.1145/3630023

Pollinger, T. (2024). Stable and mass-conserving high-dimensional simulations with the
sparse grid combination technique for full HPC systems and beyond [PhD thesis]. https:
//doi.org/10.18419/opus-14210

Pollinger, T., Craen, A. V., Offenhäuser, P., & Pflüger, D. (2024). Realizing joint extreme-
scale simulations on multiple supercomputers—two superfacility case studies. 1568–1584.
https://doi.org/10.1109/SC41406.2024.00104

Pollinger, T., Rentrop, J., Pflüger, D., & Kormann, K. (2023). A stable and mass-conserving
sparse grid combination technique with biorthogonal hierarchical basis functions for kinetic
simulations. Journal of Computational Physics, 112338. https://doi.org/10.1016/j.jcp.
2023.112338

SG++ development team. (2018). SGpp. In GitHub repository. GitHub. https://github.com/
SGpp/SGpp

Tamellini, L., Piazzola, C., Nobile, F., Sprungk, B., Porta, G., Guignard, D., & Tesei, F. (2024).
The sparse grids Matlab kit. https://sites.google.com/view/sparse-grids-kit/home

Verboncoeur, J. P. (2005). Particle simulation of plasmas: Review and advances. Plasma
Physics and Controlled Fusion, 47, A231. https://doi.org/10.1088/0741-3335/47/5a/017

Pollinger et al. (2025). DisCoTec: Distributed higher-dimensional HPC simulations with the sparse grid combination technique. Journal of Open
Source Software, 10(106), 7018. https://doi.org/10.21105/joss.07018.

5

https://doi.org/10.1103/revmodphys.79.421
https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1145/2807591.2807623
https://ins.uni-bonn.de/media/public/publication-media/griesiam.ps.gz
https://ins.uni-bonn.de/media/public/publication-media/griesiam.ps.gz
https://github.com/obersteiner/sparseSpACE
https://mediatum.ub.tum.de/doc/1613369/1613369.pdf
https://mediatum.ub.tum.de/doc/1613369/1613369.pdf
https://doi.org/10.1145/3630023
https://doi.org/10.1145/3630023
https://doi.org/10.18419/opus-14210
https://doi.org/10.18419/opus-14210
https://doi.org/10.1109/SC41406.2024.00104
https://doi.org/10.1016/j.jcp.2023.112338
https://doi.org/10.1016/j.jcp.2023.112338
https://github.com/SGpp/SGpp
https://github.com/SGpp/SGpp
https://sites.google.com/view/sparse-grids-kit/home
https://doi.org/10.1088/0741-3335/47/5a/017
https://doi.org/10.21105/joss.07018

	Summary
	Statement of need
	Methods: Sparse grid combination technique and implementation
	State of the field
	Acknowledgements
	References

