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Summary
MDCraft is a comprehensive Python package designed to enhance research workflows involving
molecular dynamics (MD) simulations. It streamlines the entire process—from setting up and
executing simulations to analyzing trajectories using sophisticated algorithms and visualizing
results—making computational chemistry more accessible to a broader audience. At its core,
MDCraft comprises three principal components.

First, the openmm module provides user-friendly tools to initialize, optimize, and run simulations,
enabling the exploration of various large soft matter systems across different timescales. This
module extends the functionality of the OpenMM (Eastman et al., 2017) simulation package
by introducing custom force fields, such as the efficient and intuitive Gaussian core model
with smeared electrostatics (GCMe) (Ye et al., 2024); incorporating advanced techniques like
the slab correction (Ballenegger et al., 2009; Yeh & Berkowitz, 1999) and the method of
image charges (Hautman et al., 1989) for charged systems with slab geometries; facilitating
coarse-grained MD simulations by scaling physical values by the fundamental quantities (mass
𝑚, length 𝑑, energy 𝜖, and Boltzmann constant 𝑘B𝑇); and offering feature-rich readers and
writers for topologies and trajectories stored in memory-efficient formats (such as NetCDF).

Second, the algorithm and analysis modules offer optimized serial and multithreaded algo-
rithms and analysis classes for evaluating structural, thermodynamic, and dynamic properties
using thermodynamic state and trajectory data. The analysis classes provide properties in-
cluding, but not limited to, static and dynamic structure factors (Ashcroft & Langreth, 1967;
Faber & Ziman, 1965; Róg et al., 2003), density and potential profiles, end-to-end vector
autocorrelation functions for polymers, and Onsager transport coefficients (Fong et al., 2020;
Rubinstein & Colby, 2003). The algorithms provide the underlying tools used to perform
analysis and are intended to be easily extensible by more-advanced users. These modules are
not limited to OpenMM and can also be used with simulation run in other packages, such as
LAMMPS (Thompson et al., 2022) and GROMACS (Abraham et al., 2015).

Finally, the fit and plot modules simplify the post-processing and visualization of data, aiding
in the creation of figures suitable for scientific publications. These modules consist of models
for curve fitting and helper functions that interface seamlessly with the commonly used SciPy
(Virtanen et al., 2020) and Matplotlib (Hunter, 2007) libraries.

Together, these modules provide both novice and experienced MD simulation users with a
comprehensive set of tools necessary to conduct computer experiments ranging from simple to
complex, all within a single, succinct package.
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Statement of need
Although established MD analysis packages such as MDAnalysis (Michaud‐Agrawal et al.,
2011), MDTraj (McGibbon et al., 2015), freud (Ramasubramani et al., 2020) and pytraj (Roe
& Cheatham, 2013) have been around for a considerable time, they primarily focus on the
post-simulation analysis. In contrast, MDCraft not only improves upon some of the analysis
tools provided, but is designed to also provide comprehensive support throughout the entire
simulation process, from initialization to post-processing.

MDCraft is tightly integrated with OpenMM, something that is unique amongst MD analysis
packages. OpenMM is a relatively new simulation toolkit that has seen a surge in popularity
in recent years due to its class-leading performance and flexibility through support for custom
intermolecular forces and integrators for equations of motion (Eastman et al., 2017). Due to
its age and design philosophy, OpenMM offers comparatively fewer choices of pair potentials
and external forces, and no built-in analysis support. MDCraft fills this gap in two ways.
First, the openmm module leverages the modularity of OpenMM to provide a suite of custom
force fields, problem-solving tools, trajectory readers and writers, and utility functions for unit
reduction, topology transformations, and performance optimizations that are not typically
available in other simulation packages. Of special significance is the support for GCMe which, as
demonstrated in a recent article (Ye et al., 2024), provides significant acceleration compared to
other force fields while also remaining physically meaningful. Then, the classes in the analysis

module enable computing common structural, thermodynamic, and dynamic properties using
the topology, trajectory, and state data generated by OpenMM (or other simulation packages).

The analysis module also stands out due to the flexibility it affords its end users, in contrast
to contemporary MD analysis packages. General users have substantial control over what
aspects of the properties to calculate and which method to employ through a plethora of
well-documented built-in options in each analysis class, without having to be concerned about
the underlying implementations. More advanced users, on the other hand, have the option to
work directly with the algorithms in the algorithms module for further customization. These
analysis functions and classes have proven indispensable in several recent publications (Glisman
et al., 2024; Lee et al., 2024; Mantha et al., 2024).

The application of MDCraft extends across various domains within computational chemistry
and materials science. Researchers can utilize it to study the low-level mechanisms involved
in supercapacitors, polymer gels, drug delivery systems, and nanomaterial synthesis, thus
highlighting its versatility and broad applicability in cutting-edge scientific research.
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