
Dolphin: A Python package for large-scale InSAR
PS/DS processing

Scott J. Staniewicz 1, Sara Mirzaee 1, Geoffrey M. Gunter 1, Talib
Oliver-Cabrera 1, Emre Havazli 1, and Heresh Fattahi 1

1 Jet Propulsion Laboratory, California Institute of Technology
DOI: 10.21105/joss.06997

Software
• Review
• Repository
• Archive

Editor: Michael Mahoney
Reviewers:

• @McWhity
• @margauxmouchene

Submitted: 21 June 2024
Published: 13 November 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique used for
measuring land surface deformation. Conventional InSAR uses pairs of SAR images to create
a single map of the relative displacement between the two acquisition times. Dolphin is a
Python library that uses state-of-the-art multi-temporal algorithms to reduce the impact of
noise sources and produce long time series of displacement at fine resolution.

Figure 1: Average surface displacement velocity along the radar line-of-sight between February, 2017 and
December, 2020. Red (blue) indicates motion towards (away from) the satellite.

Statement of need
InSAR has been a powerful tool for decades, both in geophysical studies, including tectonics,
volcanism, and glacier dynamics, as well as human applications such as urban development,
mining, and groundwater extraction. The launch of the European Space Agency’s Sentinel-1
satellite in 2014 dramatically increased the availability of free, open-access SAR data. However,
processing InSAR data remains challenging, especially for non-experts.

Advanced algorithms combining persistent scatterer (PS) and distributed scatterer (DS)
techniques, also known as phase linking, have been developed over the past decade to help
overcome decorrelation noise in longer time series (Guarnieri & Tebaldini, 2008). Despite their
potential, these methods have only recently begun to appear in open-source tools.

Staniewicz et al. (2024). Dolphin: A Python package for large-scale InSAR PS/DS processing. Journal of Open Source Software, 9(103), 6997.
https://doi.org/10.21105/joss.06997.

1

https://orcid.org/0000-0002-3055-5731
https://orcid.org/0000-0001-8194-5951
https://orcid.org/0000-0003-4612-0887
https://orcid.org/0000-0002-2315-4710
https://orcid.org/0000-0002-1236-7067
https://orcid.org/0000-0001-6926-4387
https://doi.org/10.21105/joss.06997
https://github.com/openjournals/joss-reviews/issues/6997
https://github.com/isce-framework/dolphin
https://doi.org/10.5281/zenodo.14041320
https://www.mm218.dev/
https://orcid.org/0000-0003-2402-304X
https://github.com/McWhity
https://github.com/margauxmouchene
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06997


The first phase linking prototype library was the FRInGE C++ library (Fattahi et al., 2019),
which implements algorithms and workflows from Ferretti et al. (2011) and Ansari et al. (2018).
The MiaplPy Python library contains a superset of the features in FRInGE, as well as new
algorithms developed in Mirzaee et al. (2023). Additionally, the MATLAB TomoSAR library
was made public in 2022, which implements the “Compressed SAR” (ComSAR) algorithm, a
variant of phase linking detailed in Ho Tong Minh & Ngo (2022).

While these tools represent significant progress, there remained a need for software capable of
handling the heavy computational demands of large-scale InSAR processing. For example, the
TomoSAR library currently requires tens of gigabytes of memory to process more than a small
area of interest, while FRInGE and MiaplPy are unable to offer speedups to users who want to
process data at a coarser output grid than the full SLC resolution. Additionally, both FRInGE
and MiaplPy were designed to process single batches of SLC images.

Dolphin was developed to process both historical archives and incrementally handle new data
in near-real time. This capability was specifically designed for the Observational Products
for End-Users from Remote Sensing Analysis (OPERA) project. OPERA, a Jet Propulsion
Laboratory project funded by the Satellite Needs Working Group (SNWG), is tasked with
generating a North American Surface Displacement product covering over 10 million square
kilometers of land at 30 meter resolution or finer, with under 72 hours of latency.

Overview of Dolphin
Dolphin processes coregistered single-look complex (SLC) radar images into a time series
of surface displacement. The software has an end-to-end surface displacement processing
workflow (Figure 2), accessible through a command line tool, which calls core algorithms for
PS/DS processing:

• The shp subpackage estimates the SAR backscatter distribution to find neighborhoods
of statistically homogeneous pixels (SHPs) using the generalized likelihood ratio test
from Parizzi & Brcic (2011) or the Kolmogorov-Smirnov test from Ferretti et al. (2011).

• The phase_link subpackage processes the complex SAR covariance matrix into a time
series of wrapped phase using the CAESAR algorithm (Fornaro et al., 2015), the
eigenvalue-based maximum likelihood estimator of interferometric phase (EMI) (Ansari
et al., 2018), or the combined phase linking (CPL) approach from Mirzaee et al. (2023).

• The ps module selects persistent scatterer pixels from the full-resolution SLCs to be
integrated into the wrapped interferograms (Ferretti et al., 2001).

• The unwrap subpackage exposes multiple phase unwrapping algorithms, including the
Statistical-cost, Network-flow Algorithm for Phase Unwrapping (SNAPHU) (C. W. Chen
& Zebker, 2001), the PHASS algorithm (available in the InSAR Scientific Computing
Environment (Rosen et al., 2018)), and the Extended Minimum Cost Flow (EMCF) 3D
phase unwrapping algorithm via the spurt library. Dolphin has pre- and post-processing
options, including Goldstein filtering (Goldstein & Werner, 1998) or interferogram
masking and interpolation (J. Chen et al., 2015).

• The timeseries module contains basic functionality to invert an overdetermined network
of unwrapped interferograms into a time series and estimate the average surface velocity.
The outputs of Dolphin are also compatible with the Miami INsar Time-series software
for users who are already comfortable with MintPy (Yunjun et al., 2019).

To meet the computational demands of large-scale InSAR processing, Dolphin leverages Just-
in-time (JIT) compilation, maintaining the readability of Python while matching the speed of
compiled languages. The software’s compute-intensive routines use the XLA compiler within
JAX (Bradbury et al., 2018) for efficient CPU or GPU processing. Users with compatible GPUs
can see 5-20x speedups by simply installing additional packages. Dolphin manages memory
efficiently through batch processing and multi-threaded I/O, allowing it to handle datasets
larger than available memory while typically using a few gigabytes for most processing stages.

Staniewicz et al. (2024). Dolphin: A Python package for large-scale InSAR PS/DS processing. Journal of Open Source Software, 9(103), 6997.
https://doi.org/10.21105/joss.06997.

2

https://github.com/isce-framework/fringe
https://github.com/insarlab/MiaplPy
https://github.com/DinhHoTongMinh/TomoSAR
https://doi.org/10.21105/joss.06997


These optimizations enable Dolphin to process hundreds of full-frame Sentinel-1 images with
minimal configuration, making it well-suited for large-scale projects such as OPERA.

Phase Linking

SHP Selection
(optional)

Coherence
matrix

optimization

Timeseries Processing

-

InterferogramsInterferograms

- Dataset

Processing (sub)module

Network Inversion
(if necessary)

  Unwrapping

Pre-processing

Post-processing

2D / 3D
unwrapping

Estimate average
velocity

-
Average Velocity

-

Displacement
Timeseries

Displacement
Timeseries

Data flow

Coregistered SLCs

Optional module

PS Selection

Figure 2: Overview of main workflow to generate surface displacement. Rectangular stacks indicate
input or intermediate raster images. Arrows show the flow of data through the configurable submodules
of Dolphin.

The Dolphin command line tool provides an interface for running the end-to-end displacement
workflow. To illustrate, if a user has created a stack of coregistered SLCs in a data/ directory,
they only need to follow two steps to run the full workflow with all default parameters:

1. Configure the workflow with the config command, indicating the location of the SLCs,
which dumps the output to a YAML file:

dolphin config --slc-files data/*

2. Run the workflow saved in the YAML configuration file with the run command:

dolphin run dolphin_config.yaml

The full set of configuration options can be viewed with the dolphin config --print-empty

command.

Figure 1 shows an example result of the final average surface velocity map created by Dolphin.
The inputs were OPERA Coregistered Single-Look Complex (CSLC) geocoded images from
Sentinel-1 data between February 2017 and December 2020 over the Mojave Desert.

Acknowledgements
Copyright © 2024, California Institute of Technology (“Caltech”). U.S. Government sponsorship
acknowledged. The research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration (80NM0018D0004). OPERA, managed by the Jet Propulsion Laboratory and funded
by the Satellite Needs Working Group, is creating remote sensing products to address Earth
observation needs across U.S. civilian federal agencies.

Staniewicz et al. (2024). Dolphin: A Python package for large-scale InSAR PS/DS processing. Journal of Open Source Software, 9(103), 6997.
https://doi.org/10.21105/joss.06997.

3

https://doi.org/10.21105/joss.06997


References
Ansari, H., De Zan, F., & Bamler, R. (2018). Efficient Phase Estimation for Interferogram

Stacks. IEEE Transactions on Geoscience and Remote Sensing, 56(7), 4109–4125. https:
//doi.org/10.1109/TGRS.2018.2826045

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs.

Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical
models for cost functions in nonlinear optimization. Journal of the Optical Society of
America A, 18(2), 338. https://doi.org/10.1364/JOSAA.18.000338

Chen, J., Zebker, H. A., & Knight, R. (2015). A persistent scatterer interpolation for retrieving
accurate ground deformation over InSAR-decorrelated agricultural fields. Geophysical
Research Letters, 42(21), 9294–9301. https://doi.org/10.1002/2015GL065031

Fattahi, H., Agram, P. S., Tymofyeyeva, E., & Bekaert, D. P. (2019). FRInGE; Full-Resolution
InSAR timeseries using Generalized Eigenvectors. 2019, G11B–0514.

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm
for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience
and Remote Sensing, 49(9), 3460–3470. https://doi.org/10.1109/TGRS.2011.2124465

Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent Scatters in SAR Interferometry. IEEE
Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/
36.898661

Fornaro, G., Verde, S., Reale, D., & Pauciullo, A. (2015). CAESAR: An Approach Based on
Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric
SAR Processing. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2050–2065.
https://doi.org/10.1109/TGRS.2014.2352853

Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical
applications. Geophysical Research Letters, 25(21), 4035–4038. https://doi.org/10.1029/
1998GL900033

Guarnieri, A. M., & Tebaldini, S. (2008). On the Exploitation of Target Statistics for SAR
Interferometry Applications. IEEE Transactions on Geoscience and Remote Sensing, 46(11),
3436–3443. https://doi.org/10.1109/TGRS.2008.2001756

Ho Tong Minh, D., & Ngo, Y.-N. (2022). Compressed SAR Interferometry in the Big Data
Era. Remote Sensing, 14(2), 390. https://doi.org/10.3390/rs14020390

Mirzaee, S., Amelung, F., & Fattahi, H. (2023). Non-linear phase linking using joined
distributed and persistent scatterers. Computers & Geosciences, 171, 105291. https:
//doi.org/10.1016/j.cageo.2022.105291

Parizzi, A., & Brcic, R. (2011). Adaptive InSAR Stack Multilooking Exploiting Amplitude
Statistics: A Comparison Between Different Techniques and Practical Results. IEEE
Geoscience and Remote Sensing Letters, 8(3), 441–445. https://doi.org/10.1109/LGRS.
2010.2083631

Rosen, P. A., Gurrola, E. M., Agram, P., Cohen, J., Lavalle, M., Riel, B. V., Fattahi, H.,
Aivazis, M. A. G., Simons, M., & Buckley, S. M. (2018). The InSAR Scientific Computing
Environment 3.0: A Flexible Framework for NISAR Operational and User-Led Science
Processing. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing
Symposium, 4897–4900. https://doi.org/10.1109/IGARSS.2018.8517504

Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis:

Staniewicz et al. (2024). Dolphin: A Python package for large-scale InSAR PS/DS processing. Journal of Open Source Software, 9(103), 6997.
https://doi.org/10.21105/joss.06997.

4

https://doi.org/10.1109/TGRS.2018.2826045
https://doi.org/10.1109/TGRS.2018.2826045
https://doi.org/10.1364/JOSAA.18.000338
https://doi.org/10.1002/2015GL065031
https://doi.org/10.1109/TGRS.2011.2124465
https://doi.org/10.1109/36.898661
https://doi.org/10.1109/36.898661
https://doi.org/10.1109/TGRS.2014.2352853
https://doi.org/10.1029/1998GL900033
https://doi.org/10.1029/1998GL900033
https://doi.org/10.1109/TGRS.2008.2001756
https://doi.org/10.3390/rs14020390
https://doi.org/10.1016/j.cageo.2022.105291
https://doi.org/10.1016/j.cageo.2022.105291
https://doi.org/10.1109/LGRS.2010.2083631
https://doi.org/10.1109/LGRS.2010.2083631
https://doi.org/10.1109/IGARSS.2018.8517504
https://doi.org/10.21105/joss.06997


Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331.
https://doi.org/10.1016/j.cageo.2019.104331

Staniewicz et al. (2024). Dolphin: A Python package for large-scale InSAR PS/DS processing. Journal of Open Source Software, 9(103), 6997.
https://doi.org/10.21105/joss.06997.

5

https://doi.org/10.1016/j.cageo.2019.104331
https://doi.org/10.21105/joss.06997

	Summary
	Statement of need
	Overview of Dolphin
	Acknowledgements
	References

