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Summary
Solar energy is a form of renewable energy whose resource (i.e., sunlight) is available on the
earth’s surface with a relatively low energy density. This type of resource inherently requires
spatial distribution of collection infrastructure in order to achieve increased generation scale.
This is true both in the case of distributed (e.g., rooftop solar) and centralized generation. As
international responses to climate change promote growing interest in solar energy, there is a
corresponding growth of interest in tools for working with distributed solar energy data that
possesses these characteristics. This package, SolarSpatialTools, aims to contribute to that
need by providing research codes for spatial analyses of solar energy data and resources.

Statement of need
As mature packages already exist for supporting general analysis and modeling of solar energy
systems, such as pvlib-python (Anderson et al., 2023) and pvanalytics (Perry et al., 2022),
this package is not intended to serve as a replacement, a competitor, or to fragment those
communities. Rather, SolarSpatialTools serves to collect codes for several tasks that are
out-of-scope for pvlib-python and pvanalytics, but are still of general interest to the research
community. Where appropriate, capabilities of SolarSpatialTools are contributed to pvlib-

python or pvanalytics. For example, a Python language port of the Wavelet Variability
Model (Lave & Kleissl, 2013) contained in the MATLAB pvlib package (Andrews et al.,
2014) was first developed within SolarSpatialTools but was contributed to pvlib-python

in 2019. SolarSpatialTools primarily grew out of personal research codes developed by the
lead author under the name solartoolbox, but as tools have reached a level of maturity that
attracted interest of a broader audience, it has been prepared as a package for more general
public use.

To be more specific, a variety of analytical techniques related to solar energy are documented in
literature, but are not already implemented by existing packages in part due to their relatively
high complexity relative to those packages’ intended scope. For example, techniques for
processing cloud motion vectors (CMVs) from spatially distributed data sets are documented in
the literature, such as the method by Jamaly & Kleissl (2018) and that by Gagné et al. (2018).
Implementation of these techniques is laborious, requiring calculation of mutual correlation
between all possible sensor pairs within a distributed data set. This fundamentally leads to a
need to handle data types (i.e., simultaneous time series for each sensor) that are not aligned
with the primary focus of the existing packages. Further, the number of calculation steps that
are specialized for these CMV calculations makes them unattractive for inclusion in existing
solar energy packages, without leading to an extreme broadening of scope to adapt to this
singular use case. At the same time, the level of detail in those calculation steps makes
them potentially difficult for other investigators to individually implement on a consistent
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and optimized basis. As they serve a common need within solar energy research, they are
implemented in a well documented way by SolarSpatialTools to help alleviate this challenge.

Features
There are three capabilities of the SolarSpatialTools package that are most likely to be of
interest for a general audience. These main capabilities are contained in the following modules:

• signalproc: tools for performing signal processing analyses across multi-sensor networks
of solar energy data

• cmv: tools for computing the cloud motion vector from spatially distributed sensor
networks

• field: tools for analyzing the relative positions of spatially distributed measurement
units via cloud motion

These three main capabilities are also supported by extended documentation and tutorials in
an additional directory of the package:

• demos: demonstration codes and sample data to help users get started with the package

Signal Processing
The signalproc module was developed as part of efforts to analyze aggregation of irradiance
by spatially distributed plants, but may also be applicable to other signal processing tasks. This
approach is used by the Wavelet Variability Model (Lave & Kleissl, 2013), the model of Marcos
et al. (2011) and the Cloud Advection Model (Ranalli & Peerlings, 2021), which was developed
by the lead author based on the physical intuition of Hoff & Perez (2010). The module
contains codes for implementing these types of models using a transfer function paradigm.
Some wrappers are provided for scipy (Virtanen et al., 2020) signal processing functions to
simplify their application on the data type conventions used by this package. A demonstration
of the signal processing capability as it pertains to comparing the different spatial aggregation
models is provided in the demos directory of the package (signalproc_demo.py).

Cloud Motion Vector Calculation
The cmv module contains tools for calculating the cloud motion vector from a spatially
distributed data set. Two methods from the literature are implemented, that of Jamaly &
Kleissl (2018) and that of Gagné et al. (2018). These methods are both based upon computation
of the relative time delay between individual sensors but utilize different techniques to process
those into a global cloud motion vector. This module depends upon signalproc for some
of its computations. A demonstration of the cloud motion vector calculation capability is
provided in the demos directory of the package (cmv_demo.py) along with a Jupyter notebook
with detailed explanations (cmv_demo.ipynb).

Field Analysis
The field module contains an implementation of the method developed by the authors
(Ranalli & Hobbs, 2024a, 2024b) for comparison of a plant’s layout from its design plan with
that inferred from relative cloud motion across the plant. The method produces a prediction
of a single reference sensor’s apparent position on the basis of the relative delay between
it and other nearby sensors. The application relies on the availability of two distinct cloud
motion vectors, which allow triangulation of the sensor’s planar position. The implementation
depends on both signalproc and cmv. It is demonstrated in several of the codes in the
demos directory including field_demo.ipynb, and field_demo_detailed.ipynb. Aspects of
automating the process (Ranalli & Hobbs, 2024b) are demonstrated by automate_cmv_demo,
field_reassignment_demo and field_demo_full_process. The last of these demonstrations
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also exemplifies parallelization of the implementation to speed up the processing for an entire
plant.

Demos
The demos directory includes a variety of demonstration codes and explanatory Jupyter note-
books for the tools in the package, as described in the preceding sections. These demonstrations
make use of a few sample datasets that are included in h5 files. Two samples are subsets of
distributed irradiance network timeseries taken as a subset of the HOPE Melpitz campaign
(Macke et al., 2017). One hour of sample data is available with the dataset’s native sample
rate of 1 s, while a longer four-day subset is available with 10 s resolution. Two additional
sample data sets consist of combiner-level data from operational photovoltaic generation plants.
Each is taken from a different plant and consists of five, distinct one hour periods of 10
s resolution time series of combiner current. These periods are chosen as those known to
experience a high degree of variability due to cloud motion, making them suitable for use with
the CMV and signal processing analyses. Data from these plants are anonymized to prevent
identification of proprietary data; combiner locations are only given in relative east and north
spatial coordinates and their generation magnitudes are scaled to an arbitrary value. As the
analytial techniques contained in this package are primarily based on the variability of the
signals, the anonymization process does not affect the utility of the data for the purposes
of the demonstrations, and in particular, the plant data are used to demonstrate the field

module.

Additional Modules
The remaining modules in SolarSpatialTools are somewhat less likely to be of general interest,
but serve either a specialized or supporting purpose to the primary functionality:

• dataio: prewritten functions for downloading and preprocessing distributed solar irradi-
ance data specifically from the HOPE (Macke et al., 2017) and NRCAN (Pelland et al.,
2021) measurement campaigns.

• irradiance: a wrapper for pvlib-python.clearsky_index for easier processing of
multiple simultaneous timeseries.

• spatial: tools for performing vector and geographic projection operations necessary for
other modules.

• stats: calculations for some simple metrics used in solar energy. The variability metrics
variability_index (Stein et al., 2012) and variability_score (Lave et al., 2015)
may not presently be implemented by other packages and might be of some interest to
other users.
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