
Fortuna.jl: Structural and System Reliability Analysis
in Julia
Damir Akchurin 1¶

1 Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD ¶
Corresponding author

DOI: 10.21105/joss.06967

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @baxmittens
• @rafaelorozco

Submitted: 26 June 2024
Published: 05 August 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
In any field of engineering, addressing uncertainties is crucial to ensure the adequate reliability
- the ability to function without failure – of structures and systems, such as residential and
commercial buildings, bridges, nuclear power plants, energy distribution networks, transportation
networks, and even electric circuits. In these systems, uncertainties are ubiquitous and present
in their geometric and material properties, the demands acting on them, and the measurements
used to assess their condition. Moreover, uncertainties can also be present in the probabilistic
models used to quantify them. As a result of the irreducibility of some of these uncertainties,
it is impossible to guarantee the absolute reliability and serviceability of a system at any
given point in time with certainty. However, it is possible to define and quantify measures of
reliability, such as the failure probability of a system under given demands, using probabilistic
methods developed within the field of structural and system reliability.

Fortuna.jl is an open-source general-purpose package for structural and system reliabil-
ity analysis purely written in the Julia programming language (Bezanson et al., 2017). It
implements a wide suite of commonly used reliability analysis methods to solve reliability,
inverse reliability, and sensitivity problems. Fortuna.jl leverages Julia’s high-performance
capabilities to efficiently solve even the most challenging reliability problems. At the same time,
Fortuna.jl is designed to be user-friendly and flexible, making it suitable for both research and
teaching settings. It is intended that Fortuna.jl can serve as a platform for the development
and implementation of new rapidly emerging reliability analysis methods.

Statement of Need
Due to the largely numerical nature of almost all reliability analysis methods, which often require
computation of gradient vectors and Hessian matrices, the use of computational resources is
necessary for all but the most trivial problems. As a result, a large number of both open-source
and commercial software packages have been developed in different programming languages
over the past 30 years, such as UQpy (Python) (Olivier et al., 2020), Pystra (Python), FERUM
(MATLAB) (Bourinet et al., 2009), and CalREL (FORTRAN) (Der Kiureghian et al., 2006).

The development of Fortuna.jl was mainly motivated by the absence of packages for structural
and system reliability analysis written in Julia. Additionally, it aimed to achieve an improved
balance between user experience, ease of implementing new reliability analysis methods,
computational efficiency, and interoperability with external finite element (FE) modeling
software not directly available through Julia.

A key distinguishing feature of Fortuna.jl is that it is capable of performing differentiation
of the limit state function, which defines the failure criterion for a given reliability problem,
required by most reliability analysis methods using automatic differentiation techniques provided

Akchurin. (2024). Fortuna.jl: Structural and System Reliability Analysis in Julia. Journal of Open Source Software, 9(100), 6967. https:
//doi.org/10.21105/joss.06967.

1

https://orcid.org/0000-0003-0849-4917
https://doi.org/10.21105/joss.06967
https://github.com/openjournals/joss-reviews/issues/6967
https://github.com/AkchurinDA/Fortuna.jl
https://doi.org/10.5281/zenodo.13222060
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/baxmittens
https://github.com/rafaelorozco
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06967
https://doi.org/10.21105/joss.06967

by ForwardDiff.jl package (Revels et al., 2016), significantly speeding up the analysis process.
This contrasts with other software packages for structural and system reliability analysis, which
typically rely on variants of finite difference approximations. As it was mentioned before,
Fortuna.jl also allows users to easily define limit state functions using external FE modeling
software, such as Abaqus, OpenSees (McKenna et al., 2010), and SAFIR (Franssen & Gernay,
2017). Fortuna.jl can also easily work with surrogate models of limit state functions that are
computationally expensive to evaluate, such as when a limit state function is defined in terms
of a complex FE model, using the functionality provided by Surrogates.jl package (Bessi et
al., 2024). Lastly, Fortuna.jl’s ability to work with random variables is based on a widely
adopted Distributions.jl package (Besançon et al., 2021), enabling seamless integration
with other software packages for probabilistic analysis written in Julia, such as Copulas.jl

(Laverny & Jimenez, 2024), RxInter.jl (Bagaev et al., 2023), and Turing.jl (Ge et al.,
2018), which provide all the functionality needed for the development and implementation of
more modern reliability analysis methods based on Bayesian inference.

Fortuna.jl has already been successfully used to compare the levels of safety achieved by the
Allowable Strength Design (ASD) and Load and Resistance Factor Design (LRFD) methods,
two design frameworks used to design individual component in structures (Akchurin et al.,
2024; Sabelli et al., 2024). Fortuna.jl is also being actively used to develop and implement a
next-generation design framework that can account for and optimize system behavior in the
design of steel structures, which cannot be achieved using the current methods such as the
ASD and LRFD.

Example
Consider a simple reliability problem from Echard et al. (2013) with the limit state function
given by

𝑔(𝑈1, 𝑈2) =
1
2
(𝑈1 − 2)2 − 3

2
(𝑈2 − 5)3 − 3, (1)

where 𝑈1 and 𝑈2 are two independent standard normal random variables. The failure domain
defined by this limit state function is shown in Figure 1. The reference geometric reliability
index 𝛽 and failure probability 𝑃𝑓 obtained using the first-order reliability method (FORM) are
3.93 and 4.21 × 10−5, respectively. These results can be easily recreated using Fortuna.jl:

Preamble:

using Fortuna

Define the random vector and its correlation matrix:

U = [randomvariable("Normal", "M", [0, 1]),

randomvariable("Normal", "M", [0, 1])]

ρ = [1 0; 0 1]

Define the limit state function:

g(u::AbstractVector) = 0.5 * (u[1] - 2) ^ 2 - 1.5 * (u[2] - 5) ^ 3 - 3

Define the reliability problem and solve it using the FORM:

Problem = ReliabilityProblem(U, ρ, g)

Solution = solve(Problem, FORM())

println("Geometric reliability index: ", Solution.β)

println("Failure probability: ", Solution.PoF)

Geometric reliability index: 3.932419

Failure probability: 4.204761E-5

As shown in the code above, the results obtained using Fortuna.jl are consistent with the
reference values.

Akchurin. (2024). Fortuna.jl: Structural and System Reliability Analysis in Julia. Journal of Open Source Software, 9(100), 6967. https:
//doi.org/10.21105/joss.06967.

2

https://doi.org/10.21105/joss.06967
https://doi.org/10.21105/joss.06967

u1

−6 −3 0 3 6

u 2

−6

−3

0

3

6

Failure domain,

 g(u1,u2) ≤ 0

Safe domain,

 g(u1,u2)>0

Joint PDF,

 fU (⃗u1,u2)

Figure 1: Failure domain defined by the limit state function in Equation 11.

Acknowledgements
The author would like to thank academic and industrial partners of the “Reliability 2030:
Design of Steel as a System” initiative for the financial support. The author also like to thank
the American Institute of Steel Construction for the financial support of the “System Reliability
for Structural Steel” project.

References
Akchurin, D., Sabelli, R., Ziemian, R. D., & Schafer, B. W. (2024). ASD and LRFD: Reliability

comparison for designs subjected to wind loads. Journal of Constructional Steel Research,
213, 108327. https://doi.org/10.1016/j.jcsr.2023.108327

Bagaev, D., Podusenko, A., & De Vries, B. (2023). RxInfer: A Julia package for reactive
real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161. https:
//doi.org/10.21105/joss.05161

Besançon, M., Papamarkou, T., Anthoff, D., Arslan, A., Byrne, S., Lin, D., & Pearson, J.
(2021). Distributions.jl: Definition and modeling of probability distributions in the JuliaStats
ecosystem. Journal of Statistical Software, 98(16). https://doi.org/10.18637/jss.v098.i16

Bessi, L., Rackauckas, C., Vikram, Singh Rathaur, R., Bhagavan, S., Marks, T., Anantharaman,
R., marcoq, Strouwen, A., Cognolato, A., Foiles, D., Latawiec, P., Bharambe, A., michiboo,
Yalburgi, S., Baker, F., Fuhrmann, J., st–, Thazhemadam, A., … Sarnoff, J. (2024).
SciML/Surrogates.jl: v6.10.0. Zenodo. https://doi.org/10.5281/ZENODO.12571718

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bourinet, J.-M., C’ecile, M., & Dubourg, V. (2009, September). A review of recent features
and improvements added to FERUM software. ISBN: 0-415-47557-0

1The figure is created using Makie.jl package (Danisch & Krumbiegel, 2021).

Akchurin. (2024). Fortuna.jl: Structural and System Reliability Analysis in Julia. Journal of Open Source Software, 9(100), 6967. https:
//doi.org/10.21105/joss.06967.

3

https://doi.org/10.1016/j.jcsr.2023.108327
https://doi.org/10.21105/joss.05161
https://doi.org/10.21105/joss.05161
https://doi.org/10.18637/jss.v098.i16
https://doi.org/10.5281/ZENODO.12571718
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.06967
https://doi.org/10.21105/joss.06967

Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization for
Julia. Journal of Open Source Software, 6(65), 3349. https://doi.org/10.21105/joss.03349

Der Kiureghian, A., Haukaas, T., & Fujimura, K. (2006). Structural reliability software at the
University of California, Berkeley. Structural Safety, 28(1-2), 44–67. https://doi.org/10.
1016/j.strusafe.2005.03.002

Echard, B., Gayton, N., Lemaire, M., & Relun, N. (2013). A combined importance sampling
and Kriging reliability method for small failure probabilities with time-demanding numerical
models. Reliability Engineering & System Safety, 111, 232–240. https://doi.org/10.1016/
j.ress.2012.10.008

Franssen, J.-M., & Gernay, T. (2017). Modeling structures in Fire with SAFIR®: Theoretical
background and capabilities. Journal of Structural Fire Engineering, 8(3), 300–323.
https://doi.org/10.1108/JSFE-07-2016-0010

Ge, H., Xu, K., & Ghahramani, Z. (2018). Turing: A language for flexible probabilistic
inference. 1682–1690.

Laverny, O., & Jimenez, S. (2024). Copulas.jl: A fully Distributions.jl-compliant copula package.
Journal of Open Source Software, 9(94), 6189. https://doi.org/10.21105/joss.06189

McKenna, F., Scott, M. H., & Fenves, G. L. (2010). Nonlinear finite-element analysis software
architecture using object composition. Journal of Computing in Civil Engineering, 24(1),
95–107. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002

Olivier, A., Giovanis, D. G., Aakash, B. S., Chauhan, M., Vandanapu, L., & Shields, M.
D. (2020). UQpy: A general-purpose Python package and development environment
for uncertainty quantification. Journal of Computational Science, 47, 101204. https:
//doi.org/10.1016/j.jocs.2020.101204

Revels, J., Lubin, M., & Papamarkou, T. (2016). Forward-mode automatic differentiation in
Julia. arXiv. https://doi.org/10.48550/ARXIV.1607.07892

Sabelli, R., Ziemian, R. D., & Schafer, B. W. (2024). ASD and LRFD lateral load combinations:
Comparison of required strength and reliability for design of structural steel. Journal of
Constructional Steel Research, 212, 108210. https://doi.org/10.1016/j.jcsr.2023.108210

Akchurin. (2024). Fortuna.jl: Structural and System Reliability Analysis in Julia. Journal of Open Source Software, 9(100), 6967. https:
//doi.org/10.21105/joss.06967.

4

https://doi.org/10.21105/joss.03349
https://doi.org/10.1016/j.strusafe.2005.03.002
https://doi.org/10.1016/j.strusafe.2005.03.002
https://doi.org/10.1016/j.ress.2012.10.008
https://doi.org/10.1016/j.ress.2012.10.008
https://doi.org/10.1108/JSFE-07-2016-0010
https://doi.org/10.21105/joss.06189
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002
https://doi.org/10.1016/j.jocs.2020.101204
https://doi.org/10.1016/j.jocs.2020.101204
https://doi.org/10.48550/ARXIV.1607.07892
https://doi.org/10.1016/j.jcsr.2023.108210
https://doi.org/10.21105/joss.06967
https://doi.org/10.21105/joss.06967

	Summary
	Statement of Need
	Example
	Acknowledgements
	References

