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Summary
OpenCCM is a compartmental modelling (Jourdan et al., 2019) software package based on
recently developed fully automated flow alignment compartmentalization methods (Vasile et
al., 2024). It is primarily intended for large-scale flow-based processes with weak coupling
between composition changes, e.g., through (bio)chemical reactions, and convective mass
transport in the system. Compartmental modelling is an important approach used to develop
reduced-order models (Benner et al., 2020; Chinesta et al., 2017) using a priori knowledge of
process hydrodynamics (Jourdan et al., 2019). Compartmental modelling methods, such as
those implemented in OpenCCM, enable simulations of these processes with far less computational
complexity while still capturing the key aspects of process dynamics.

OpenCCM integrates with two multiphysics simulation software packages, OpenCMP (Monte et al.,
2022) and OpenFOAM (Greenshields, 2024), allowing for ease of transferring simulation data for
compartmentalization. Additionally, it provides users with built-in functionality for computing
residence times and exporting for use in other simulation or visualization software, including
ParaView (Ayachit, 2015). Post-processing methods are included for mapping simulation
results from compartment domains to the original simulation domain, which are useful for
visualization purposes and for further simulations in using other software (e.g., multi-scale
modelling).

Statement of Need
Simulation-based design and analysis continue to be widely applied in the research and
development of physicochemical processes. Processes with large differences in characteristic
time and length scales result in the infeasibility of direct multiphysics simulations due to
computational limitations. This imposes significant computational costs, which severely reduce
the utility of these simulations for entire classes of processes. Compartmental modeling is
well-suited for such applications because it enables the generatation of reduced-order models
which are less computationally demanding, frequently by orders of magnitude, compared to
direct continuum mechanical simulations. This is enabled by taking advantage, when present,
of weak couplings between the short and long-time-scale dynamic phenomena.

However, several barriers prevent the more widespread use of compartmental models. The
largest of these is the lack of software for automating the generation compartmental models.
Closed-source software packages, specifically AMBER (Quintessa, n.d.), exists for manually
creating and solving well-mixed compartment networks. However, the cost of these packages are
prohibitive for much of the research community and it lacks automated compartmentalization.
Open-source software, Cantera (Goodwin et al., 2023), also exists to solve compartment
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networks. However, it does not incorporate flow information, when available, either from direct
observation or continuum mechanical simulations. Furthermore, neither of these software allow
for the usage and direct transfer of flow information from continuum mechanical simulations,
such as computational fluid dynamics (CFD) simulations, which are typically feasible over
short (hydrodynamic) time scales.

The overall aim of OpenCCM is to fill the need for an open-source compartmental modeling
package that is user-friendly, compatible with a variety of simulation package back-ends (e.g.,
OpenFOAM and OpenCMP), and which fits into the user’s existing simulation and post-processing
software toolchain, i.e., ParaView.

Features

FEATURE DESCRIPTION

Model support Accepts OpenCMP (Monte et al., 2022) and OpenFOAM (Greenshields,
2024) results

————————- ————————————————————————————-
Compartmentaliza-
tion

Single-phase flow-based compartment identification

————————- ————————————————————————————-
Compartmental
Modelling

Plug Flow Reactors (PFRs)-in-series-based model

Previous state-of-the-art Continous Stirred-tank reactor (CSTR)-based
models

————————- ————————————————————————————-
CM Simulations Linear, non-linear, and reversible arbitrary reactions

1st Order upwinding finite-difference-based
Adaptive time-stepping

————————- ————————————————————————————-
Post-Processing Residence time distribution
————————- ————————————————————————————-
Output Intermediary mesh format

Labeled compartments in Paraview format
Concentrations from CM simulations in both Paraview and simulation
package format

————————- ————————————————————————————-
Performance Multi-threading

Caching of intermediary results to speed up subsequent runs

User Interface
The OpenCCM Python package can be used via text-based configuration files centred around
the command line interface (CLI), where each simulation run/project is self-contained in a
project directory. In addition to the OpenCCM configuration files, the required contents include
flow information from one of two open-source simulation packages: OpenCMP or OpenFOAM. For
OpenCMP three files are required:

1) The OpenCMP config file,
2) The mesh on which the simulation was run, and
3) The .sol solution file containing the velocity profile to create the compartmental model.

For OpenFOAM, two sub-directories are required:

1) The constant/ directory, which contains the mesh information in ASCII format,
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2) A directory containing the simulation results, which will be used to create the compart-
mental model saved in ASCII format.

The path to the solution directory is specified in the OpenCCM configuration file and the
constant/ directory is assumed to be in the same parent folder. OpenCCM will create several
output directories: log/, which contains detailed debugging information (if enabled); cache/,
which contains intermediary files; and output_ccm/, which contains both simulation results of
the compartmental model (in various user-specified formats) and ParaView files for visualization.

A sample config file, CONFIG, which outlines the available parameters, is included in the main
directory. An excerpt of it, showing the compartmental modeling parameters, is shown below.
Square brackets indicate parameters with default values along with those values indicated
inside the brackets.

[COMPARTMENT MODELLING]

# Whether to use PFRs-in-series or a CSTR to model each compartment.

model = PFR

# Volumetric flow through a single facet

# below which the flow is considered 0.

flow_threshold_facet = [1e-15]

# Volumetric flow threshold through a surface

# below which the flow is considered 0.

flow_threshold = [1e-15]

# Maximum allowable difference (in % of compartment volume)

# between connections to merge them into one location.

dist_threshold = [5 / 100]

# Absolute tolerances for checking that mass is conserved

# after the flow optimization is performed.

atol_opt = [1e-2]

Reaction Configuration File
The chemical reaction parser in OpenCCM reads and parses the reaction configuration files and
can handle general reaction equations of the form,

aA + bB + [...] -> cC + dD + [...]

with associated numeric rate constants. It intentionally does not support the standard <->

symbol for reversible chemical reactions, so that each independent reaction has an explicitly
defined rate constant. Therefore, a reversible reaction must be written as two independent
forward reactions, each with its own rate constant. Each species label can contain letters
and numbers, but cannot contain brackets or special characters, e.g., “(”, “)”, “+”, “-”, “^”.
Kinetic rate constants must be expressed as positive real numbers in standard or scientific
notation. Additionally, each reaction/rate pair must have a unique identifier (i.e., R1, R2).
For example, the reversible reaction,

2NaCl+ CaCO3 ⇔ Na2CO3 + CaCl2

with 𝑘𝑓 = 5𝑒 − 2 and 𝑘𝑟 = 2 (chosen to be dimensionless for example). A configuration file
for this reversible reaction may then be:

[REACTIONS]

R1: 2NaCl + CaCO3 -> Na2CO3 + CaCl2

R2: Na2CO3 + CaCl2 -> 2NaCl + CaCO3

[RATES]

R1: 5e-2
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R2: 2

where R1 and R2 are the reaction identifiers for the forward and reverse reactions, respectively.

An example reaction config file, CONFIG_REACTIONS, is provided in the main package directory.

Examples of Usage
Several examples are provided in the OpenCCM documentation, which demonstrates the using
of both OpenCMP and OpenFOAM simulation-based flow information for compartmentalization.
One example, located in examples/OpenCMP/pipe_with_recird_2d/, uses the geometry from
(Vasile et al., 2024) and shows how to execute the needed CFD simulation for flow information
(both using OpenCMP and OpenFOAM), create/visualize the compartmental model results, and
compare the predicted RTD to the reference result directly from CFD simulation.

For this illustrative example, the steady-state hydrodynamic flow-profile is obtained by running
the OpenCMP simulation through the run_OpenCMP.py script in the folder. The resulting flow
profile was opened in ParaView and a line integral convolution visualization of the velocity
field is shown below, coloured by velocity magnitude.

Figure 1: Visualization of hydrodynamics from CFD simulation with line integral convolutions indicating
local flow direction and color corresponding to velocity magnitude.

The underlying velocity field data is then processed using OpenCCM to generate a network of
compartments by executing the run_compartment.py script. The figure below shows each
element of the original mesh coloured according to the compartment to which it belongs.

Figure 2: Visualization of flow-informed compartmentalization with coloring corresponding to compart-
ment number.

That network of compartments is further processed, as each compartment is represented by a
series of plug-flow reactors (PFRs). The resulting network (graph) of PFRs is shown in the
figure below. Nodes are the centres of the PFRs and edges are connections (flows) between
PFRs.
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Figure 3: Undirectly graph of the compartment network resulting from both (i) flow-information
compartmentalization and (ii) the use of spatially-varying compartment approximations (PFRs).

RTD Curves
The residence time distribution (RTD) curve from both the CFD and compartmental model
(CM) simulations is computed using the script in the supplementary material of (Vasile et al.,
2024).
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Figure 4: Residence time distribution curves for CFD and CM simulations.

Reactions
Finally, to demonstrate how to simulate chemical reaction, an example is included using the
reversible reaction system from above:

2NaCl+ CaCO3 ⇔ Na2CO3 + CaCl2

with 𝑘𝑓 = 5𝑒 − 2 and 𝑘𝑟 = 2 as the forward and backward rate constants (chosen to
be dimensionless for example). All species have an initial dimensionless concentration of 0
and have inlet boundary dimensionless concentration values of [NaCl] = [CaCO3] = 1 and
[Na2CO3] = [CaCl2] = 0. The equations and conditions have already been specified, and the
simulation can be run by using the run_compartment_w_rxn.py script. Note that when this
script is run multiple times, computational times following the first will be much shorter in
that the compartmental model is pre-computed (stored within the project directory).

To analyze the results, the equilibrium values for this reversible system are calculated as follows:

𝑘𝑓[NaCl]2[CaCO3] = 𝑘𝑟[Na2CO3][CaCl2]

𝑘𝑓
𝑘𝑟

= [Na2CO3][CaCl2]
[NaCl]2[CaCO3]

5 × 10−2

2
= (𝑥)(𝑥)

(1 − 2𝑥)2(1 − 𝑥)
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𝑥 ≈ 0.1147

where x is the change in CaCO3, in dimensionless units.

The expected equilibrium concentrations for the four species are: [NaCl] = 0.7706, [CaCO3] =
0.8853, [Na2CO3] = 0.1147, and [CaCl2] = 0.1147. Based on the figures below and from
direct inspection of the CM simulation results, correct steady-state values are obtained at the
reactor outlet.
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To output the ParaView visualizations, change output_VTK to True in the CONFIG file and
re-run the simulation.
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