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Summary
Generalized additive models (GAMs, Hastie & Tibshirani, 1990; Wood, 2017) are an extension
of generalized linear models that allows the effects of covariates to be modelled as smooth
functions. GAMs are increasingly used in many areas of science (e.g. Pedersen, Miller, Simpson,
& Ross, 2019; Simpson, 2018) because the smooth functions allow nonlinear relationships
between covariates and the response to be learned from the data through the use of penalized
splines. Within the R (R Core Team, 2024) ecosystem, Simon Wood’s mgcv package (Wood,
2017) is widely used to fit GAMs and is a Recommended package that ships with R as part of
the default install. A growing number of other R packages build upon mgcv, for example as
an engine to fit specialised models not handled by mgcv itself (e.g. GJMR, Marra & Radice,
2023), or to make use of the wide range of splines available in mgcv (e.g. brms, Bürkner,
2017).

The gratia package builds upon mgcv by providing functions that make working with GAMs
easier. gratia takes a tidy approach (Wickham, 2014) providing ggplot2 (Wickham, 2016)
replacements for mgcv ’s base graphics-based plots, functions for model diagnostics and
exploration of fitted models, and a family of functions for drawing samples from the posterior
distribution of a fitted GAM. Additional functionality is provided to facilitate the teaching and
understanding of GAMs. The overall aim of gratia is to abstract away some of the complexity of
working with GAMs fitted using mgcv to allow researchers to focus on using and interrogating
their model rather than the technical R programming needed to achieve this.

Generalized additive models
A GAM has the form

𝑦𝑖 ∼ 𝒟(𝜇𝑖, 𝜙)
𝑔(𝜇𝑖) = A𝑖𝛾 + 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖) + 𝑓3(𝑥3𝑖, 𝑥4𝑖) + ⋯

where observations 𝑦𝑖 are assumed to be conditionally distributed 𝒟 with expectation 𝔼(𝑦𝑖) =
𝜇𝑖 and dispersion parameter 𝜙. The expectation of 𝑦𝑖 is given by a linear predictor of strictly
parametric terms, whose model matrix is A𝑖 with parameters 𝛾, plus a sum of 𝑗 = 1,… , 𝐽
smooth functions of covariates 𝑓𝑗(). 𝑔() is a link function mapping values on the linear
predictor to the scale of the response.

The smooth functions 𝑓𝑗 are represented in the GAM using penalised splines, which are
themselves formed as weighted sums of basis functions, 𝑏𝑘(), (De Boor, 2001) e.g.

𝑓𝑗(𝑥𝑖𝑗) =
𝐾
∑
𝑘=1

𝛽𝑗𝑘𝑏𝑗𝑘(𝑥𝑖𝑗)
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for a univariate spline. The weights, 𝛽𝑘, are model coefficients to be estimated alongside 𝛾.
To avoid overfitting, estimates 𝛽𝑗𝑘 and �̂� are sought to minimise the penalised log-likelihood
of the model

ℓ𝑝(𝛽) = ℓ(𝛽) − 1
2𝜙

∑
𝑗

𝜆𝑗𝛽
T
𝑗 S𝑗𝛽𝑗

where ℓ and ℓ𝑝 are the log likelihood and penalized log likelihood, respectively, of the data at
the parameter estimates, S𝑗 are penalty matrices and 𝜆𝑗 are smoothing parameters associated
with each smooth. Note that 𝛽 now contains the coefficients 𝛾 and 𝛽𝑗𝑘. 𝛽T

𝑗 S𝑗𝛽𝑗 measures the
wiggliness of 𝑓𝑗, which, with the default basis-penalty combination, is the integrated squared
second derivative of 𝑓𝑗. The smoothing parameters, 𝜆, control the trade-off between fit to the
data and the complexity of the estimated functions.

The default spline created by mgcv ’s s() is a low rank, thin plate regression spline (Wood,
2003). Figure 1, shows the basis functions for such a spline fitted to data simulated from the
function

𝑓 = 0.2𝑥11{10(1 − 𝑥)}6 + 10(10𝑥)3(1 − 𝑥)10

with additive Gaussian noise (𝜇 = 0, 𝜎 = 1), and the associated penalty matrix, prepared
using functions from gratia.
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Figure 1: Basis functions (a) and associated penalty matrix (b) for a penalised, low rank, thin plate
regression spline. a) shows the individual basis functions (thin coloured lines; numbers indicate which
basis function each line represents) multiplied by their respective model coefficients, as well as the data
(black points) to which the GAM was fitted. The estimated smooth is shown as the thick grey line. b)
shows the penalty matrix for the basis shown in a). Note the 9th basis function (labelled ‘F9’, which is
the linear function at the lower left to upper right in a), is not affected by the penalty as it has 0 second
derivative everywhere, and hence the resulting penalty for this function is 0.

Statement of need
mgcv is state-of-the-art software for fitting GAMs and their extensions to data sets on the order
of millions of observations (e.g. Li & Wood, 2020; Wood, 2011; Wood, Pya, & Säfken, 2016).
mgcv provides functions for plotting estimated smooth functions, as well as for producing model
diagnostic plots. These functions produce plots using base graphics, the original plotting system
for R. Additionally, mgcv returns fitted GAMs as complex list objects (see ?mgcv::gamObject),
the contents of which are not easily used for downstream analysis without careful study of
mgcv and its help pages, plus a good understanding of GAMs themselves. The overall aim of
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gratia is to abstract away some of the complexity of working with GAMs fitted using mgcv to
allow researchers to focus on using and interrogating their model rather than the technical
R programming needed to achieve this. As a result, gratia is also increasingly being used by
researchers in many fields, and has, at the time of writing, been cited over 250 times (data
from Google Scholar).

One of the motivations driving the development of gratia was to provide equivalent plotting
capabilities using the ggplot2 package (Wickham, 2016). To facilitate this, gratia provides
functions for representing the model components as objects using tidy principles, which are
suitable for plotting with ggplot2 or manipulation by packages in the tidyverse (e.g. Wickham,
Cetinkaya-Rundel, & Grolemund, 2023). This functionality allows for high-level plotting using
the draw() method, as well as easily customisable plot creation using lower-level functionality.

Taking a Bayesian approach to smoothing with penalized splines (Kimeldorf & Wahba, 1970;
Silverman, 1985; Wahba, 1983, 1985; see Miller, 2021 for a summary), it can be shown that
GAMs fitted by mgcv are an empirical Bayesian model with a (usually improper) multivariate
normal prior on the basis function coefficients. Samples from the posterior distribution of
these models can be used to estimate the uncertainty in quantities derived from a GAM. This
can be invaluable in applied research, where, for example, a quantity of interest may arise as
an operation on predictions from the model. gratia provides functions for sampling from the
posterior distribution of estimated smooths and from the model as a whole, where sampling
can include the uncertainty in the estimated coefficients (fitted_samples()), the sampling
uncertainty of the response (predicted_samples()), or both (posterior_samples()). By
default, a Gaussian approximation to the posterior distribution is used, but a simple Metropolis
Hastings sampler can be substituted (using mgcv::gam.mh()), which has better performance
when the posterior is not well approximated by a Gaussian approximation.

The teaching of GAMs can benefit from visualisation of the spline basis functions and associated
penalty matrices. gratia provides this functionality via basis() and penalty(), which can
be applied either to a smooth specification (e.g. s(x, z, bs = "ds")) or to a fitted GAM
(see Figure 1). These functions expose functionality already available in mgcv, but supply
outputs in a tidy format, which makes access to these features more intuitive than the
original implementations in mgcv. Additional utility functions are provided, for example:
model_constant(), edf(), model_edf(), overview(), and inv_link(), which extract the
model intercept term (or terms), the effective degrees of freedom of individual smooths and
the overall model, shows a summary of the fitted GAM, and extracts the inverse of the link
function(s) used, respectively.

State of the field
Several R packages provide similar functionality to that of gratia. Notably, the mgcViz package
(Fasiolo, Nedellec, Goude, & Wood, 2020) provides sophisticated capabilities for plotting
estimated smooths for models fitted by mgcv and qgam (Fasiolo, Wood, Zaffran, Nedellec,
& Goude, 2020), and model diagnostics plots. A particular feature of mgcViz is that it was
designed to be scalable, easily handling models fitted to data with millions of observations, a use
case not currently well handled by gratia. tidymv (Coretta, 2023a) and its successor, tidygam
(Coretta, 2023b), provide plots of estimated smooths and model predictions respectively, as
well as differences of smooths, but the focus is on univariate smooths, in contrast to gratia’s
ability to plot multivariate and specialist smooths (e.g. soap film smooths). Like gratia, the
itsadug package (van Rij, Wieling, Baayen, & van Rijn, 2022) is motivated to make working
with estimated GAMs and related models easier. itsadug uses base graphics for plotting, but
in place of partial effects plots, produces plots of adjusted predictions, and while useful for a
broad range of models, is especially focused on GAMs fitted to longitudinal data with random
effects.

Areas where gratia stands out from these other packages are i) the consistent functionality for
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a range of posterior simulations (mgcViz has some support for simulating new response values)
as illustrated below, ii) support for computing derivatives of smooths, partial derivatives, and
derivatives on the response scale (i.e. conditional derivatives), iii) tools for learning or teaching
how GAMs work, iv) the range of utility functions that make working with GAMs easier, and
v) the simple and consistent tidy interface to all functionality.

Example usage
In this short example, I illustrate a few of the features of gratia using a data set of sea surface
chlorophyll a measurements at a number of locations in the Atlantic Ocean, whose spatial
locations are given as geographical coordinates (lat and lon), plus two additional covariates;
bathy, the depth of the ocean, in metres, at the sampling location, and jul.day, the day of
the year in which the observation was made. These data are in the chl dataset provided by
the gamair package accompanying Wood (2017).

The packages required for this example are loaded, as is the data set chl with

pkgs <- c("mgcv", "gamair", "gratia", "ggplot2", "dplyr", "ggdist")

loaded <- vapply(pkgs, library, logical(1L), logical.return = TRUE,

character.only = TRUE)

data(chl, package = "gamair")

A simple GAM for these data is to model the response (chl) with a spatial smooth of latitude
(lat) and longitude (lon) as covariates. Here, I use a spline on the sphere (SOS) smoother built
using a Duchon spline with second order derivative penalty (Duchon, 1977). Additional terms
included in the linear predictor are a smooth of the day of year of sample collection (jul.day)
and a smooth of ocean depth (bath). The response is assumed to be conditionally Tweedie
distributed, with the power parameter (𝑝) of the distribution estimated during fitting. Model
coefficients and smoothing parameters are estimated using restricted maximum likelihood
(Wood, 2011). To use parallel processing in some parts of the model fitting algorithm, the
nthreads control parameter is set to 8 (set this lower if your machine doesn’t have this many
physical CPU cores).

ctrl <- gam.control(nthreads = 8)

m1 <- gam(

chl ~ s(lat, lon, bs = "sos", m = -1, k = 150) +

s(jul.day, bs = "cr", k = 20) +

s(bath, k = 10),

data = chl, method = "REML", control = ctrl, family = tw()

)

Model diagnostic plots can be produced using appraise(), which by default produces four
plots: i) a QQ plot of model residuals, with theoretical quantiles and reference bands generated
following Augustin, Sauleau, & Wood (2012), ii) a plot of residuals (deviance residuals are the
default) against linear predictor values, iii) a histogram of residuals, and iv) a plot of observed
versus fitted values. Model diagnostic plots for the model, with simulated residuals-based
reference bands on the QQ plot, are produced with

appraise(m1, method = "simulate")

which show significant heteroscedasticity and departure from the conditional distribution of
the response given the model, as seen in the increasing spread of the deviance residuals at
larger values of the linear predictor in the upper right panel of Figure 2.
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Figure 2: Model diagnostic plots for the GAM fitted to the ocean chlorophyll a data produced by the
appraise() function. The four plots produced are: i) a QQ plot of model residuals, with theoretical
quantiles and reference bands generated following Augustin et al. (2012) (upper left), ii) a plot of
residuals (deviance residuals are default) against linear predictor values (upper right), iii) a histogram of
deviance residuals (lower left), and iv) a plot of observed versus fitted values (lower right)

The problems with the model apparent in the diagnostics plots are probably due to important
controls on chlorophyll a missing from the covariates available in the example data. However,
the original model assumed constant values for the dispersion, 𝜙, and the power parameter 𝑝,
which may be too inflexible if missing covariates mean that important effects are not included
in the model.

A distributional GAM, containing linear predictors for all distributional parameters,

𝑦𝑖 ∼ 𝒟(𝜇𝑖, 𝑝𝑖, 𝜑𝑖)
𝑔(𝜇𝑖) = 𝛽1 + 𝑓1(lat𝑖, lon𝑖) + 𝑓2(jul.day𝑖) + 𝑓3(bath𝑖)
𝑔(𝑝𝑖) = 𝛽2 + 𝑓4(lat𝑖, lon𝑖) + 𝑓5(jul.day𝑖) + 𝑓6(bath𝑖)
𝑔(𝜑𝑖) = 𝛽3 + 𝑓7(lat𝑖, lon𝑖) + 𝑓8(jul.day𝑖) + 𝑓9(bath𝑖)

may improve the model diagnostics.

A distributional GAM for 𝒟 Tweedie with linear predictors for 𝜇, 𝑝, and 𝜑 is fitted below using
mgcv ’s twlss() family

m2 <- gam(

list(

chl ~ s(lat, lon, bs = "sos", m = -1, k = 150) + # location

s(jul.day, bs = "cr", k = 20) + s(bath, k = 10),

~ s(lat, lon, bs = "sos", m = -1, k = 100) + # power

s(jul.day, bs = "cr", k = 20) + s(bath, k = 10),

~ s(lat, lon, bs = "sos", m = -1, k = 100) + # scale

s(jul.day, bs = "cr", k = 20) + s(bath, k = 10)

),

data = chl, method = "REML", control = ctrl, family = twlss()

)
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This model has much better model diagnostics although some large residuals remain (Figure
3). Note that the QQ plot uses theoretical quantiles from a standard normal distribution
as the simulation-based values are not currently available in mgcv or gratia for some of the
distributional families, including the twlss() family, and as such, the reference bands may not
be appropriate.
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Figure 3: Model diagnostic plots for the distributional GAM fitted to the ocean chlorophyll a data
produced by the appraise() function. Refer to the caption for Figure 2 for a description of the plots
shown.

gratia can handle distributional GAMs fitted with mgcv, and also those fitted using GJRM’s
gamlss(). Below, the estimated smooths from m2 are plotted using draw()

# Define the coordinate system to use for plotting on a map

crs <- "+proj=ortho +lat_0=20 +lon_0=-40"

draw(m2, crs = crs, default_crs = 4326, dist = 0.05, rug = FALSE)

The plots produced by draw() from a fitted model are known as partial effect plots (Figure
4), which show the component contributions, on the link scale, of each model term to the
linear predictor. The y axis on these plots is typically centred around 0 due to most smooths
having a sum-to-zero identifiability constraint applied to them. This constraint is what allows
the model to include multiple smooths and remain identifiable. These plots allow you to read
off the contributions of each smooth to the fitted response (on the link scale); they show
link-scale predictions of the response for each smooth, conditional upon all other terms in the
model, including any parametric effects and the intercept, having zero contribution. In the
parlance of the marginaleffects package (Arel-Bundock, Greifer, & Heiss, 2024), these plots
show adjusted predictions, just where the adjustment includes setting the contribution of all
other model terms to the predicted value to zero. For partial derivatives (what marginaleffects
would call a marginal effect or slope), gratia provides derivatives().

Here, we see a specialised plot drawn for spline-on-the-sphere smooths 𝑓(lat𝑖, lon𝑖) (Figure
4, left-hand column), which uses ggplot2::coord_sf() and functionality from the sf package
(Pebesma, 2018; Pebesma & Bivand, 2023) to visualise the smooth via an orthographic
projection.
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Figure 4: Estimated smooth functions for the distributional GAM, m2, fitted to the ocean chlorophyll a
data. The first row of plots is for the linear predictor of the conditional mean chlorophyll a, while the
second and third rows are for the conditional power parameter and conditional scale, respectively. The
shaded ribbons are 95% Bayesian credible intervals.

If the provided plots are insufficient for users’ needs, lower-level functionality is provided by
gratia to facilitate bespoke plotting with ggplot2. For example, to evaluate the SOS smooth
at a grid (50x50) of values over the range of the covariates, we use smooth_estimates() and
add a Bayesian credible interval with add_confint():

smooth_estimates(m2, select = "s(lat,lon)", n = 50) |>

add_confint()

This returns a data frame of the requested values that is amenable for plotted with ggplot().

Posterior sampling
Perhaps we are interested in the average expected chlorophyll a between 40–50 degrees N and
40–50 degrees W. An estimate for this value can be computed directly from the fitted model
as follows. First create a slice through the data for the spatial locations were are interested
in using the data_slice() function, which ensures that ds contains everything we need to
predict from the fitted model

ds <- data_slice(m2,

lat = evenly(lat, lower = 40, upper = 50, by = 0.5),

lon = evenly(lon, lower = -50, upper = -40, by = 0.5))

Next, fitted_values() returns the predicted values at the specified locations. I only include
the spatial effects, excluding the effects of ocean depth and day of year, and ignore terms in
the other linear predictors as they do not affect the expected chlorophyll a:

use <- c("(Intercept)", "s(lat,lon)")

fv <- fitted_values(m2, data = ds, terms = use) # predict
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Finally, I summarise the predictions for the location parameter to yield the average of the
predicted values

fv |>

filter(.parameter == "location") |>

summarise(chl_a = mean(.fitted))

## # A tibble: 1 x 1

## chl_a

## <dbl>

## 1 1.07

While this is an acceptable answer to the question, it lacks an uncertainty estimate. This is
where posterior sampling is useful. With a small modification of the above code and a little
data wrangling, we can produce an uncertainty estimate, using fitted_samples() to generate
posterior draws of the expected chlorophyll a:

fs <- fitted_samples(m2, # model

data = ds, # values of covariates to predict at

terms = use, # which terms to include in predictions

n = 10000, # number of posterior draws

method = "gaussian", # Gaussian approximation to the posterior

unconditional = TRUE, # incl uncertainty for estimating lambda

n_cores = 4, # how many CPU cores to compute MVN samples

seed = 342) # set the random number seed, used internally

The posterior draws can then be summarised as before, except now the average chlorophyll a
is calculated separately for each posterior draw (.draw)

fs |> # take the posterior draws

group_by(.draw) |> # group them by `.draw`

summarise(chl_a = mean(.fitted)) |> # compute mean of fitted chl a

ggdist::median_qi() # summarise posterior

## # A tibble: 1 x 6

## chl_a .lower .upper .width .point .interval

## <dbl> <dbl> <dbl> <dbl> <chr> <chr>

## 1 1.07 0.866 1.34 0.95 median qi

The posterior distribution of average chlorophyll a is summarised using median_qi() from the
ggdist package (Kay, 2024a, 2024b). While we could use the base R function quantile() to
compute the interval, the use of median_qi() illustrates how gratia tries to interact with other
packages.

Conclusion
gratia provides a range of functionality to make working with estimated GAMs easier for users.
It is designed to take some of the pain out of working with models, simplifying plotting of
smooths and related features (differences, derivatives) and exposes the powerful machinery of
the mgcv package without the need for a deep understanding of GAMs, splines, and the inner
structure of mgcv ’s model objects. As such, it provides a useful addition for anyone wanting
to use GAMs in their data analyses without requiring them to be a GAM expert.

Acknowledgements
Development of gratia was supported by a Natural Sciences and Engineering Research Council
of Canada (NSERC) Discovery Grant to the author (RGPIN-2014-04032).

Simpson. (2024). gratia: An R package for exploring generalized additive models. Journal of Open Source Software, 9(104), 6962. https:
//doi.org/10.21105/joss.06962.

8

https://doi.org/10.21105/joss.06962
https://doi.org/10.21105/joss.06962


References
Arel-Bundock, V., Greifer, N., & Heiss, A. (2024). How to interpret statistical models

using marginaleffects for R and Python. Journal of statistical software, 111(9), 1–32.
doi:10.18637/jss.v111.i09

Augustin, N. H., Sauleau, E.-A., & Wood, S. N. (2012). On quantile quantile plots for
generalized linear models. Computational statistics & data analysis, 56(8), 2404–2409.
doi:10.1016/j.csda.2012.01.026

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal
of Statistical Software, Articles, 80(1), 1–28. doi:10.18637/jss.v080.i01

Coretta, S. (2023b). tidygam: Tidy prediction and plotting of generalised additive models.
doi:10.32614/CRAN.package.tidygam

Coretta, S. (2023a). tidymv: Tidy model visualisation for generalised additive models.
doi:10.32614/CRAN.package.tidymv

De Boor, C. (2001). A practical guide to splines. Applied mathematical sciences (1st ed.).
New York, NY: Springer.

Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces.
Constructive theory of functions of several variables (pp. 85–100). Springer, Berlin,
Heidelberg. doi:10.1007/BFb0086566

Fasiolo, M., Nedellec, R., Goude, Y., & Wood, S. N. (2020). Scalable visualization methods
for modern generalized additive models. Journal of Computational and Graphical Statistics,
29(1), 78–86. doi:10.1080/10618600.2019.1629942

Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., & Goude, Y. (2020). Fast cali-
brated additive quantile regression. Journal of the American Statistical Association,
1–11. doi:10.1080/01621459.2020.1725521

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. Boca Raton, Fl.:
Chapman & Hall / CRC. doi:10.1201/9780203753781-6

Kay, M. (2024a). ggdist: Visualizations of distributions and uncertainty in the grammar
of graphics. IEEE transactions on visualization and computer graphics, 30(1), 414–424.
doi:10.1109/TVCG.2023.3327195

Kay, M. (2024b). ggdist: Visualizations of distributions and uncertainty. Zenodo.
doi:10.5281/ZENODO.10782896

Kimeldorf, G. S., & Wahba, G. (1970). A correspondence between bayesian estimation on
stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41(2),
495–502. doi:10.1214/AOMS/1177697089

Li, Z., & Wood, S. N. (2020). Faster model matrix crossproducts for large generalized
linear models with discretized covariates. Statistics and computing, 30(1), 19–25.
doi:10.1007/s11222-019-09864-2

Marra, G., & Radice, R. (2023). GJRM: Generalised joint regression modelling (pp. R package
version 0.2–6.4). doi:10.32614/CRAN.package.GJRM

Miller, D. L. (2021). Bayesian views of generalized additive modelling. arXiv [stat.ME].
doi:10.48550/arXiv.1902.01330

Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. The
R journal, 10(1), 439. doi:10.32614/rj-2018-009

Pebesma, E., & Bivand, R. (2023). Spatial data science: With applications in R (1st Edition.).
New York: Chapman; Hall/CRC. doi:10.1201/9780429459016

Simpson. (2024). gratia: An R package for exploring generalized additive models. Journal of Open Source Software, 9(104), 6962. https:
//doi.org/10.21105/joss.06962.

9

https://doi.org/10.18637/jss.v111.i09
https://doi.org/10.1016/j.csda.2012.01.026
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/CRAN.package.tidygam
https://doi.org/10.32614/CRAN.package.tidymv
https://doi.org/10.1007/BFb0086566
https://doi.org/10.1080/10618600.2019.1629942
https://doi.org/10.1080/01621459.2020.1725521
https://doi.org/10.1201/9780203753781-6
https://doi.org/10.1109/TVCG.2023.3327195
https://doi.org/10.5281/ZENODO.10782896
https://doi.org/10.1214/AOMS/1177697089
https://doi.org/10.1007/s11222-019-09864-2
https://doi.org/10.32614/CRAN.package.GJRM
https://doi.org/10.48550/arXiv.1902.01330
https://doi.org/10.32614/rj-2018-009
https://doi.org/10.1201/9780429459016
https://doi.org/10.21105/joss.06962
https://doi.org/10.21105/joss.06962


Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized addi-
tive models in ecology: An introduction with mgcv. PeerJ, 7, e6876. doi:10.7717/peerj.6876

R Core Team. (2024). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.
org/

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric
regression curve fitting. Journal of the Royal Statistical Society. Series B, Statistical
methodology, 47 (1), 1–52. doi:10.1111/j.2517-6161.1985.tb01327.x

Simpson, G. L. (2018). Modelling palaeoecological time series using generalised additive
models. Frontiers in Ecology and Evolution, 6, 149. doi:10.3389/fevo.2018.00149

van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H. (2022). itsadug: Interpreting time
series and autocorrelated data using GAMMs. doi:10.32614/CRAN.package.itsadug

Wahba, G. (1983). Bayesian “confidence intervals” for the cross-validated smoothing
spline. Journal of the Royal Statistical Society, 45(1), 133–150. doi:10.1111/j.2517-
6161.1983.tb01239.x

Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter
in the generalized spline smoothing problem. Annals of Statistics, 13(4), 1378–1402.
doi:10.1214/AOS/1176349743

Wickham, H. (2014). Tidy data. Journal of statistical software, 59(10), 1–23.
doi:10.18637/jss.v059.i10

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Use R! Springer International
Publishing. doi:10.1007/978-3-319-24277-4

Wickham, H., Cetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science: Import,
tidy, transform, visualize, and model data (2nd ed.). Sebastopol, CA: O’Reilly Media.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society.
Series B, Statistical methodology, 65(1), 95–114. doi:10.1111/1467-9868.00374

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estima-
tion of semiparametric generalized linear models. Journal of the Royal Statistical Society.
Series B, Statistical methodology, 73(1), 3–36. doi:10.1111/j.1467-9868.2010.00749.x

Wood, S. N. (2017). Generalized additive models: An introduction with R, second edition.
CRC Press. doi:10.1201/9781315370279

Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing parameter and model selection
for general smooth models. Journal of the American Statistical Association, 111(516),
1548–1563. doi:10.1080/01621459.2016.1180986

Simpson. (2024). gratia: An R package for exploring generalized additive models. Journal of Open Source Software, 9(104), 6962. https:
//doi.org/10.21105/joss.06962.

10

https://doi.org/10.7717/peerj.6876
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/j.2517-6161.1985.tb01327.x
https://doi.org/10.3389/fevo.2018.00149
https://doi.org/10.32614/CRAN.package.itsadug
https://doi.org/10.1111/j.2517-6161.1983.tb01239.x
https://doi.org/10.1111/j.2517-6161.1983.tb01239.x
https://doi.org/10.1214/AOS/1176349743
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1201/9781315370279
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.21105/joss.06962
https://doi.org/10.21105/joss.06962

	Summary
	Generalized additive models
	Statement of need
	State of the field
	Example usage
	Posterior sampling

	Conclusion
	Acknowledgements
	References

