
FiLiP: A python software development kit (SDK) for
accelerating the development of services based on
FIWARE IoT platform
Thomas Storek 1,2, Junsong Du 1¶, Sebastian Blechmann 1, Rita
Streblow 1, and Dirk Müller 1

1 Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany 2
Drees & Sommer SE, Germany ¶ Corresponding author

DOI: 10.21105/joss.06953

Software
• Review
• Repository
• Archive

Editor: Sarath Menon
Reviewers:

• @DiegoAscanio
• @abhishektiwari

Submitted: 25 March 2024
Published: 10 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
FIWARE, an open-source initiative providing open-source software platform components and
a set of standardized APIs (Application Programming Interfaces), has been instrumental in
driving digitalization across various domains and research fields (Araujo et al., 2019). The use
of FIWARE enables faster, easier, and cheaper developments of a wide range of IoT-enabled
solutions (FIWARE Catalogue – FIWARE, 2023). Over the years, the FIWARE Next-Generation-
Service-Interface (NGSI-v2) API specification has been well-developed. There is also a variety
of reusable software components, so-called Generic Enablers (GEs), complying with NGSI-v2
(Cantera Fonseca et al., 2018), including Orion Context Broker, IoT Agent, and QuantumLeap.
These components play a pivotal role in core context information management, IoT device
connectivity, and time-series database interaction (FIWARE Catalogue – FIWARE, 2023).

In this context, we developed FiLiP, a Python Software Development Kit (SDK) designed to
accelerate the development of services that interact with the aforementioned FIWARE GEs.
FiLiP emerges as a powerful tool, particularly in the domain of energy management systems,
where it simplifies development, enhances efficiency, and empowers developers to create reliable
and reusable IoT applications, aligning with the digital transformation facilitated by FIWARE.

Statement of need
The NGSI-v2 specification defines a standardized RESTful API to represent, exchange and
manage context information throughout its entire lifecycle (Cantera Fonseca et al., 2018).
Researchers or application developers can refer to the specifications and build reliable and
interoperable data systems. However, NGSI-v2 is a general cross-domain specification and
does not provide any domain-specific information models. Although it defines the general data
structure of entities, the definition of domain-specific attributes and metadata information
remains in the responsibility of the users. Hence, adopting the specification for domain-specific
engineering applications requires extensive training in both data modeling and programming of
IoT applications. Additionally, the specification has continuously evolved over time, necessitat-
ing significant efforts to define domain-specific data models and to ensure that applications
and models comply with the latest specification.

Existing FIWARE APIs client libraries can already provide some basic support but often fall short
in several key areas. A comparison as shown in Table 1 reveals the shortage of various existing
libraries, including limited support for multiple FIWARE APIs, lack of advanced validation and
data models integration, and unsatisfactory usability and reliability.

Storek et al. (2024). FiLiP: A python software development kit (SDK) for accelerating the development of services based on FIWARE IoT
platform. Journal of Open Source Software, 9(101), 6953. https://doi.org/10.21105/joss.06953.

1

https://orcid.org/0000-0002-2652-1686
https://orcid.org/0000-0003-2247-2423
https://orcid.org/0000-0002-8135-1843
https://orcid.org/0000-0001-7640-0930
https://orcid.org/0000-0002-6106-6607
https://doi.org/10.21105/joss.06953
https://github.com/openjournals/joss-reviews/issues/6953
https://github.com/RWTH-EBC/FiLiP
https://doi.org/10.5281/zenodo.13375149
http://sarathmenon.me/
https://orcid.org/0000-0002-6776-1213
https://github.com/DiegoAscanio
https://github.com/abhishektiwari
https://creativecommons.org/licenses/by/4.0/
https://github.com/FIWARE-GEs
https://github.com/telefonicaid/fiware-orion
https://github.com/telefonicaid/iotagent-node-lib
https://github.com/orchestracities/ngsi-timeseries-api?tab=readme-ov-file
https://doi.org/10.21105/joss.06953

Table 1: Comparison of FiLiP with existing FIWARE APIs client libraries. “-” indicates that the feature
is not supported or not available. “*” indicates that the feature is available but incomplete.

Library API Support
Valida-
tion

Data-
model

Learning
Support

Test
Cases

QuantumLeap-
Client (“QLClient,”
2024)

TS - - Readme file 18

fiware-ngsi-api
(“Fiware-Api,”
2024)

D, E Basic Propri-
etary

- -

fiot-client-ngsi-
python
(“Fiot-Client,”
2024)

D*, E, S - - Readme file 31

orion-python-client
(“Orion-Client,”
2024)

E, S* - - Readme file 1

FiLiP Device (D), Entity
(E), Subscription (S),
TimeSeries (TS)

En-
hanced

Cus-
tomiz-
able

Documenta-
tion, 12
examples, and
8 tutorials

82
(84%
cover-
age)

Although FIWARE provides OpenAPI specifications (OpenAPI Specification, 2023) (Cantera
Fonseca et al., 2018), which can be used to automatically generate API clients for various
programming languages, there are still issues that make those auto-generated API clients less
reliable:

• The quality of auto-generated code strongly depends on the provided input data, i.e. Ope-
nAPI specification.

• Integrating additional features is generally not viable because manipulating the generated
code can result in larger maintenance efforts.

• The generated clients do not enable advanced data validation and reasonable error
handling.

As a result, the lack of a comprehensive and reliable tool kit continues to hinder the adoption
of FIWARE-based platforms in research fields and industrial applications. To overcome the
aforementioned issues and shortcomings of the existing solutions, we present FiLiP (Fiware
Library for Python).

Implementation
As the name suggests, the library is written in Python and provides a set of client classes
for typical recurring GEs for IoT systems. Currently, FiLiP supports Orion Context Broker
for central data management, IoT Agent for modular IoT-Interfaces, and QuantumLeap for
time-series management. The interactions with the API endpoints are implemented as methods
of these corresponding “Clients”. For example, the ContextBrokerClient implements typical
CRUD (create, read, update, and delete) operations for the NGSI-v2 Context Broker. By
encapsulating API interactions in these specialized clients, FiLiP eliminates the necessity for
users to create unreliable data models and consult API documentation for endpoint details.
Instead, users can directly invoke clients’ methods of FiLiP, thereby automating the composition
and dispatch of the requisite CRUD operations. This feature greatly reduces the difficulty
of getting started with the FIWARE-based platform and also accelerates the development of
applications.

Storek et al. (2024). FiLiP: A python software development kit (SDK) for accelerating the development of services based on FIWARE IoT
platform. Journal of Open Source Software, 9(101), 6953. https://doi.org/10.21105/joss.06953.

2

https://doi.org/10.21105/joss.06953

To enhance the efficiency of service development, FiLiP offers a range of advanced functionalities.
One of them is the robust and enhanced implementation of data parsing and validation via
the Pydantic library (“Pydantic,” 2023). The information models defined by NGSI-v2 API
standards are implemented as Pydantic data models in FiLiP. In addition to basic validation
tasks such as verifying the id and type required to identify an entity, FiLiP offers numerous
enhanced validation functionalities. For instance, we have developed a custom validator that
checks the unit specified in metadata based on UN/CEFACT standards (“Codes for Units
of Measure Used in International Trade,” 2021). When these validations are successful, the
validator enriches the metadata with additional information such as symbol, conversion factor,
and description. This enhanced validation functionality ensures data quality and integrity in
interactions with FIWARE GEs, while also reducing the effort required from developers.

Another enhanced functionality of FiLiP is the data model integration. In practice, individual
domains often necessitate domain-specific, and even application-specific data models to meet dis-
tinct requirements. The FiLiP “Models”, e.g., ContextEntity and ContextEntityKeyValues,
facilitate this process by offering parent classes that ensure adherence to FIWARE API standards.
Consequently, specific attributes can be defined to construct data models tailored to particular
use cases, while the compliance with FIWARE is also validated and ensured by the provided
FiLiP “Models”.

Since “Clients” and “Models” constitute the core features of FiLiP, the reliability of these
components is pivotal to the overall usability and effectiveness of the library. In the realm of
open-source software development, maintaining code quality and dependability is paramount.
FiLiP accomplishes this by implementing 82 test cases based on the Python unit testing
framework (“Unitest,” 2023), currently covering over 80 % of the code base.

In general, the abstraction of API endpoints, implementation of data parsing and enhanced
validation, and the comprehensive testing workflow enable FiLiP to simplify the development
process of applications by reducing the need for API specification reading, manual data checking,
and functional validation within the application code. Thus, FiLiP effectively avoids the use
for unreliable boilerplate code, thereby reducing overall development and maintenance costs.

Use Case
FiLiP has already been used to deploy various cloud-based building energy management systems
(Blechmann et al., 2023; Kümpel et al., 2019; T. Storek et al., 2019). Among those, one
simplified use case is to regulate the indoor air temperature of an office via IoT-enabled devices
and a simple controller. Figure 1 shows an office in a building equipped with two smart devices:
a smart temperature sensor and a smart electrical heater, which can send measurements or
receive commands, respectively, via Message Queuing Telemetry Transport (MQTT) protocol.
FiLiP provides reliable functionalities to deploy and commission a control service efficiently.

Figure 1: Use Case Overview: Intelligent Room Temperature Regulation.

Storek et al. (2024). FiLiP: A python software development kit (SDK) for accelerating the development of services based on FIWARE IoT
platform. Journal of Open Source Software, 9(101), 6953. https://doi.org/10.21105/joss.06953.

3

https://doi.org/10.21105/joss.06953

To establish the communication workflow, entities and IoT devices must be registered in the
corresponding FIWARE components, i.e., Context Broker and IoT Agent. In the following
example, by using FiLiP, an office room can be registered using post_entity() method of
the ContextBrokerClient. An entity object of the office is created using the ContextEntity

class, which specifies those mandatory properties of the office and can validate their com-
pliance. Similarly, a temperature sensor and a heater can also be registered as IoT devices
by calling post_device() method of the IoTAgentClient of FiLiP. The classes Device and
DeviceAttribute help to create the device models more efficiently and correctly. Especially
for the various setting parameters of Device, e.g. transport and protocol, the validation can
avoid ambiguity and significantly simplifies the development.

create entities

office = ContextEntity(id="Office:001", type="Office")

context_broker_client.post_entity(entity=office)

provision IoT sensor

t_zone = DeviceAttribute(name='temperature', type="Number")

temperature_sensor = Device(

device_id='device:001',

entity_name='TemperatureSensor:001',

entity_type='TemperatureSensor',

protocol='IoTA-JSON',

transport='MQTT',

apikey=APIKEY,

attributes=[t_zone])

iot_client.post_device(device=temperature_sensor)

provision IoT actuator

heating_power = NamedCommand(name="heating_power")

heater = Device(

device_id='device:002',

entity_name='Heater:001',

entity_type='Heater',

protocol='IoTA-JSON',

transport='MQTT',

apikey=APIKEY,

commands=[heating_power])

iot_client.post_device(device=heater)

Besides, FiLiP can be used to add semantic information to the data points. In the example
below, the temperature sensor is associated with the office through a relationship labeled
hasSensor. Another relationship locatedIn can further link this office with a building, provided
that the entity of that building already exists.

add semantic information

hasSensor = NamedContextAttribute(

name="hasSensor",

type="Relationship",

value=temperature_sensor.entity_name)

locatedIn = NamedContextAttribute(

name="locatedIn",

type="Relationship",

value=building.id)

office.add_attributes(attrs=[hasSensor, locatedIn])

Storek et al. (2024). FiLiP: A python software development kit (SDK) for accelerating the development of services based on FIWARE IoT
platform. Journal of Open Source Software, 9(101), 6953. https://doi.org/10.21105/joss.06953.

4

https://doi.org/10.21105/joss.06953

To this end, data can be exchanged between the FIWARE-based platform and the smart devices.
A controller can then be deployed as a cloud service to regulate the indoor temperature of
the office. With the help of FiLiP, a communication interface between the controller and the
FIWARE GEs can be efficiently established as well.

retrieve data from the temperature sensor

temperature = context_broker_client.get_attribute_value(

entity_id=temperature_sensor.entity_name,

entity_type=temperature_sensor.type,

attr_name=t_zone.name)

calculate new set point with controller logic

heating_power.value = controller_logic(temperature=temperature)

send command to the heater entity

context_broker_client.post_command(

entity_id=heater.id,

entity_type=heater.type,

command=heating_power)

The presented use case exemplifies how FiLiP plays a pivotal role in the implementation of
IoT-enabled applications using FIWARE GEs. To shorten the learning curve for developers and
researchers, we provide examples for individual functions as entry points and comprehensive
workshop materials for developing a complete FIWARE-based application leveraging FiLiP
(Thomas Storek & Müller, 2023). Hence, developers can efficiently get informed and focus on
building innovative IoT solutions.

Conclusion
The primary strengths of using FiLiP encompass the following key aspects:

• Simplified Development: FiLiP simplifies interaction with FIWARE GEs by providing
classes like ContextEntity and Device, ensuring validated data exchange and informed
decisions without advanced expertise.

• Maintainable Applications: FiLiP encapsulates API interactions within class methods,
separating application logic from the dynamic evolving NGSI-v2 APIs. This approach
enhances application reusability and maintainability.

• Reliable Functionalities: FiLiP’s comprehensive testing, with over 80% coverage, ensures
code quality and allows developers to focus on developing applications.

In conclusion, FiLiP is a robust and reliable tool. With FiLiP, developers can efficiently create
innovative IoT applications, and researchers can explore smart solutions in various domains,
including energy management and beyond.

Acknowledgements
We gratefully acknowledge the financial support provided by the Federal Ministry for Eco-
nomic Affairs and Climate Action (BMWK), promotional references 03ET1495A, 03ET1551A,
0350018A, 03ET1561B, 03EN1030B.

Storek et al. (2024). FiLiP: A python software development kit (SDK) for accelerating the development of services based on FIWARE IoT
platform. Journal of Open Source Software, 9(101), 6953. https://doi.org/10.21105/joss.06953.

5

https://doi.org/10.21105/joss.06953

References

Araujo, V., Mitra, K., Saguna, S., & Åhlund, C. (2019). Performance evaluation of FIWARE:
A cloud-based IoT platform for smart cities. Journal of Parallel and Distributed Computing,
132, 250–261. https://doi.org/10.1016/j.jpdc.2018.12.010

Blechmann, S., Sowa, I., Schraven, M. H., Streblow, R., Müller, D., & Monti, A. (2023).
Open source platform application for smart building and smart grid controls. Automation
in Construction, 145, 104622. https://doi.org/10.1016/j.autcon.2022.104622

Cantera Fonseca, J. M., Márquez, F. G., & Jacobs, T. (2018). FIWARE-NGSI v2 Specification.

Codes for units of measure used in international trade. (2021). In UNECE Code List
Recommendations. UN Centre for Trade Facilitation. https://unece.org/trade/uncefact/
cl-recommendations

Fiot-client. (2024). In GitHub repository. GitHub. https://github.com/FIoT-Client/
fiot-client-ngsi-python

FIWARE catalogue – FIWARE. (2023, June 26). https://www.fiware.org/catalogue/

Fiware-api. (2024). In GitHub repository. GitHub. https://github.com/robotics-4-all/
fiware-ngsi-api

Kümpel, A., Storek, T., Baranski, M., Schumacher, M., & Müller, D. (2019). A cloud-
based operation optimization of building energy systems using a hierarchical multi-agent
control. Journal of Physics: Conference Series, 1343(1), 012053. https://doi.org/10.1088/
1742-6596/1343/1/012053

OpenAPI specification. (2023, November 6). https://www.openapis.org/

Orion-client. (2024). In GitHub repository. GitHub. https://github.com/openath/
orion-python-client

Pydantic: Data validation using python type hint. (2023). In GitHub repository. GitHub.
https://doi.org/10.5281/zenodo.10185654

QLClient. (2024). In GitHub repository. GitHub. https://github.com/OkinawaOpenLaboratory/
QuantumLeapClient

Storek, T., Lohmöller, J., Kümpel, A., Baranski, M., & Müller, D. (2019). Application of the
open-source cloud platform FIWARE for future building energy management systems. Jour-
nal of Physics: Conference Series, 1343(1), 012063. https://doi.org/10.1088/1742-6596/
1343/1/012063

Storek, Thomas, & Müller, D. (2023). FIWARE for Energy System Engineers: An Introduction
to FIWARE-based Applications in Python. https://doi.org/10.18154/RWTH-2022-11779

Unitest: Unit testing framework. (2023). In Python Documentation. Python. https:
//docs.python.org/3/library/unittest.html

Storek et al. (2024). FiLiP: A python software development kit (SDK) for accelerating the development of services based on FIWARE IoT
platform. Journal of Open Source Software, 9(101), 6953. https://doi.org/10.21105/joss.06953.

6

https://doi.org/10.1016/j.jpdc.2018.12.010
https://doi.org/10.1016/j.autcon.2022.104622
https://unece.org/trade/uncefact/cl-recommendations
https://unece.org/trade/uncefact/cl-recommendations
https://github.com/FIoT-Client/fiot-client-ngsi-python
https://github.com/FIoT-Client/fiot-client-ngsi-python
https://www.fiware.org/catalogue/
https://github.com/robotics-4-all/fiware-ngsi-api
https://github.com/robotics-4-all/fiware-ngsi-api
https://doi.org/10.1088/1742-6596/1343/1/012053
https://doi.org/10.1088/1742-6596/1343/1/012053
https://www.openapis.org/
https://github.com/openath/orion-python-client
https://github.com/openath/orion-python-client
https://doi.org/10.5281/zenodo.10185654
https://github.com/OkinawaOpenLaboratory/QuantumLeapClient
https://github.com/OkinawaOpenLaboratory/QuantumLeapClient
https://doi.org/10.1088/1742-6596/1343/1/012063
https://doi.org/10.1088/1742-6596/1343/1/012063
https://doi.org/10.18154/RWTH-2022-11779
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://doi.org/10.21105/joss.06953

	Summary
	Statement of need
	Implementation
	Use Case
	Conclusion
	Acknowledgements
	References

