
anywidget: reusable widgets for interactive analysis
and visualization in computational notebooks
Trevor Manz 1¶, Nezar Abdennur 2,3, and Nils Gehlenborg 1

1 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA 2 Department of
Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA 3 Department
of Systems Biology, UMass Chan Medical School, Worcester, MA, USA ¶ Corresponding author

DOI: 10.21105/joss.06939

Software
• Review
• Repository
• Archive

Editor: Hugo Ledoux
Reviewers:

• @kylebarron
• @ianhi

Submitted: 10 June 2024
Published: 23 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The anywidget project provides a specification and toolset for portable and reusable web-based
widgets in interactive computing environments (Figure 1). First, it defines a standard for
widget front-end code based on the web browser’s native module system. Second, it provides
tools to author, distribute, and execute these modules across web-based computing platforms.
Since its release in February 2023, anywidget has steadily gained adoption. As of October
2024, nearly 100 new widgets have been created or ported to anywidget and published to the
Python Package Index (PyPI), along with many standalone scripts and notebooks. These tools
cover general-purpose visualization libraries (Heer & Moritz, 2024; Lekschas & Manz, 2024) as
well as notebook integrations for applications in biology (Mark S. Keller et al., 2021; Manz et
al., 2022, 2023; Manz, Lekschas, et al., 2024), mapping (Barron, 2024), astronomy (Boch &
Desroziers, 2020), and education (Warmerdam, 2024). Anywidget has also been integrated
into popular visualization libraries like Altair (VanderPlas et al., 2018), enhancing interactivity
in notebooks and deepening user engagement with visualizations and code.

Figure 1: The anywidget project. Components highlighted in magenta. The Anywidget Front-End
Module (AFM) is a specification for widget front-end code based on ECMAScript (ES) modules (Guo
et al., 2023). AFM can be written in web-standard ES or with authoring tools that support popular
front-end frameworks. The anywidget Python package adapts Jupyter-compatible platforms (JCPs) into
AFM-compatible host platforms, enabling Jupyter Widgets to be authored and distributed with AFM.
Other host platforms support AFM directly. The project CLI can be used to bootstrap new anywidget
projects that are ready to publish to PyPI.

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

1

https://orcid.org/0000-0001-7694-5164
https://orcid.org/0000-0001-5814-0864
https://orcid.org/0000-0003-0327-8297
https://doi.org/10.21105/joss.06939
https://github.com/openjournals/joss-reviews/issues/6939
https://github.com/manzt/anywidget
https://doi.org/10.5281/zenodo.13737641
https://3d.bk.tudelft.nl/hledoux
https://orcid.org/0000-0002-1251-8654
https://github.com/kylebarron
https://github.com/ianhi
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06939


Statement of need
Computational notebooks are the preferred environment for interactive computing and data
analysis. These platforms provide an interface where users can write, execute, and interact
with code and data in real-time. Notebooks connect an interactive front end (typically a
web browser) to an external system that runs the code, combining prose, executable snippets,
and media. The widespread adoption of notebooks has driven the development of tools for
integrating interactive visualizations within these environments (Z. J. Wang et al., 2024). The
Jupyter project (Granger & Pérez, 2021; Kluyver et al., 2016; Perez & Granger, 2007) has
become synonymous with computational notebooks, largely due to its widespread success in
fostering an extensive ecosystem of community tools (e.g., for producing books (Holdgraf &
others, 2022), presentation slides (F. Wang et al., 2023), and dashboards (e.g., Voilà)).

Approaches for authoring interactive visualizations across notebook platforms, including Jupyter,
vary widely (Z. J. Wang et al., 2024). This inconsistency has led to fragmented methods
for creating and distributing custom visualizations and interactive components, hindering the
development of a composable solutions. The Jupyter Widgets system shows potential for
aligning interactive visualization systems with the broader notebook ecosystem. However, the
complexity and error-prone nature of authoring custom widgets has limited their adoption by
the visualization community. Widget development is hindered by fragmented distribution and
cumbersome development experience due to complex integration requirements from diverse
environments (Manz, Gehlenborg, et al., 2024). Moreover, Jupyter Widgets are Jupyter-
specific, with the widest support limited to Python kernels, leaving gaps in addressing new
and alternative interactive computing environments. A universal protocol is needed to simplify
authorship and support an ecosystem of pluggable interactive widgets.

Overview

A standard for widget front-end modules
The Anywidget Front-End Module (AFM) is a specification for widget front-end code based
on ECMAScript (ES) modules, the built-in module system for web browsers.

export default {

initialize({ model }) {

// Add instance-specific event listeners

return () => {

// Clean up event listeners

}

},

render({ model, el }) {

// Render the widget

return () => {

// Clean up event listeners

}

},

};

Widget behavior is defined through methods for managing a widget’s lifecycle, such as
initialization, rendering, and destruction. Running AFM requires a host platform to load the
module and call each of these lifecycle methods with a set of required interfaces. These
interfaces include minimal APIs for the AFM to communicate with the host and modify the
output user interface (UI).

Importantly, AFM does not impose specific implementations for widget state or UI manage-
ment. By making host requirements explicit, it decouples widget front-end code from host

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

2

https://voila.readthedocs.io
https://doi.org/10.21105/joss.06939


implementations, thereby improving widget portability (Manz, Gehlenborg, et al., 2024). With
AFM, developers can author a widget by writing a web-standard ES module, either inline or in
a separate file, without a build process (Figure 2a, top). For better ergonomics when creating
UIs, developers can introduce a build step targeting AFM to utilize advanced tools (Figure 2a,
bottom).

Figure 2: Authoring a custom Jupyter Widget with anywidget. (a) AFM can be authored in web-standard
ECMAScript (top) or with a front-end framework using a bridge (bottom). (b) The anywidget Python
package allows authoring custom Jupyter Widgets with AFM (top), usable across various JCPs (bottom).

While AFM is understood by the browser directly, much of web development today uses
front-end frameworks, such as React or Svelte, which introduce non-standard syntax and
unique paradigms for UI and state management. Rather than incorporate such frameworks into
the AFM specification, the anywidget project provides several framework bridges to make it
easier to author AFMs using frameworks (Figure 2a, bottom). These libraries provide utilities
to use idiomatic APIs and constructs to manage widget state and to wrap those constructs
into the AFM lifecycle methods used by host platforms. For example, anywidget’s React
bridge exposes a React-based declarative hook useModelState for accessing widget state and
a function to convert a React component into an AFM export.

There are several advantages to supporting frameworks via bridges. First, AFM is more stable
and minimal because it is not tied to a third-party library or framework. Second, it gives
framework communities the opportunity to build integrations, distributing the maintenance
burden and benefiting from framework-specific expertise. This plugin-based approach has
seen success in projects like the local front-end development server Vite and the Python Flask
web framework. Third, bridges can be updated and versioned independently from the AFM
specification, meaning that changes cannot break host compatibility.

Supporting tools and ecosystem
Custom Jupyter Widgets

The main library for the project is anywidget, a Python package that simplifies the authoring
and distribution of custom Jupyter Widgets using AFM (Figure 2b, top). Jupyter Widgets
(Grout et al., 2024) are the official framework from Jupyter to extend notebooks with interactive

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

3

https://doi.org/10.21105/joss.06939


views and controls for objects that reside in the kernel. Since widgets are integral to Jupyter’s
architecture, they enjoy broad support across Jupyter-compatible platforms (JCPs) such as
JupyterLab, Google Colab, and Visual Studio Code. However, developing and distributing
cross-JCP widgets is complex and error-prone (Manz, Gehlenborg, et al., 2024). Anywidget
addresses this complexity by providing the glue code to turn each JCP into an AFM-compatible
host. This compatibility layer aligns AFM with Jupyter Widgets and the Python ecosystem,
making anywidget a powerful tool for creating and distributing interactive widgets across
platforms. Anywidgets can be remixed and reused with other custom Jupyter Widgets in
notebooks, standalone HTML pages, and dashboarding frameworks (Figure 2b, bottom).

Tooling for authorship and distribution

To make widget development more enjoyable and accessible, the anywidget project offers
additional development tools for widget authors. It allows for creating widgets directly within
notebooks, enabling them to start as prototypes and evolve into full packages. Aligning with
modern front-end tools, anywidget also implements hot module replacement (HMR) for live
code editing development. HMR dynamically updates widgets without reloading the page or
losing state, improving the developer experience and enabling rapid prototyping. To enable
HMR, developers can set an environment variable in the notebook cell:

%%env

ANYWIDGET_HMR=1

Finally, the anywidget project includes a command line interface (CLI) for bootstrapping new
anywidget projects that are ready to publish to PyPI (Figure 1, bottom). The CLI includes
options for selecting front-end framework adapters and additional tools like TypeScript.

npm create anywidget@latest

Beyond Jupyter

AFM extends the widget ecosystem beyond Jupyter. Many popular web frameworks and
dashboarding libraries support embedding Jupyter Widgets into their layout systems and
interacting with their components. This support also extends to anywidgets, thanks to the
Jupyter Widgets compatibility layer. AFM also provides opportunities for frameworks and
platforms to add more specialized support, making better use of their respective internal state
management and reactivity systems. For instance, marimo (Agrawal & Scolnick, 2024), a new
reactive notebook for Python, has adopted AFM as the standard for its third-party plugin
API. Similarly, the Panel web framework (Rudiger et al., 2024) supports using AFM to define
custom components.

Efforts are underway to support AFM with other compute backends besides Python. For
example, anyhtmlwidget (Mark S. Keller, 2024) brings anywidget concepts to R, enabling
reusable AFM-based widgets for R documents and Shiny applications with bi-directional
R-JavaScript communication. Additionally, the anywidget project implements AFM-based
displays for the Deno kernel, a JavaScript and TypeScript runtime.

Availability
The anywidget project is released under an open-source MIT license, with all source code
publicly available on GitHub (https://github.com/manzt/anywidget). The core Python library,
anywidget, is packaged and distributed via the PyPI and conda-forge. The front-end adapter
libraries, development tooling, and project-template CLI are distributed through the npm
registry. The Deno Jupyter kernel integration is published to the JavaScript Registry (JSR).
Further documentation about the project can be found at https://anywidget.dev.

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

4

https://github.com/manzt/anywidget
https://anywidget.dev
https://doi.org/10.21105/joss.06939


Related work
Interactive notebook visualization tools vary widely in features and compatibility (Z. J. Wang
et al., 2024). Some tools offer rich features (e.g., bi-directional communication) but rely on
platform-specific APIs, limiting compatibility (Drosos et al., 2020; Jain et al., 2022; Li et al.,
2023; F. Wang et al., 2023; Zhao et al., 2022). For example, frameworks like Bokeh and
Streamlit enable custom extensions, but these integrations are tied to their specific frameworks
and cannot be reused elsewhere. More simple approaches provide broader compatibility but lack
features which meaningfully enrich user workflows. For example, using static templates or the
NOVA framework (Z. J. Wang et al., 2022) offers wide compatibility, as the resulting HTML
displays can be embedded in nearly any web-based notebook platform. However, this approach
supports only client-side applications with one-way communication, meaning that only the
initial visualization state can come from the notebook, without further updates from other
cells. Other approaches, like ImJoy (Ouyang et al., 2019), offer a more unified architecture for
building interactive visualizations with rich features across multiple platforms. However, it is
an entirely separate computing platform with limited JCP integrations, not a framework for
building reusable, modular visualization components.

Acknowledgements
We thank Talley Lambert for his technical contributions to the anywidget Python codebase
and recognize Jan-Hendrik Müller for his significant community contributions and advocacy of
the project. Our appreciation extends to the entire anywidget community and the Abdennur
and HIDIVE labs for their helpful discussions.

Funding
TM, NA, and NG acknowledge funding from the National Institutes of Health (UM1 HG011536,
OT2 OD033758, R33 CA263666, R01 HG011773).

References
Agrawal, A., & Scolnick, M. (2024). Marimo. https://github.com/marimo-team/marimo

Barron, K. (2024). Lonboard. https://github.com/developmentseed/lonboard

Boch, T., & Desroziers, J. (2020). ipyaladin: Enabling Aladin Lite in Jupyter notebooks. In P.
Ballester, J. Ibsen, M. Solar, & K. Shortridge (Eds.), Astronomical data analysis software
and systems XXVII (Vol. 522, p. 117).

Drosos, I., Barik, T., Guo, P. J., DeLine, R., & Gulwani, S. (2020). Wrex: A unified
programming-by-example interaction for synthesizing readable code for data scientists.
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12.
https://doi.org/10.1145/3313831.3376442

Granger, B. E., & Pérez, F. (2021). Jupyter: Thinking and storytelling with code and data.
Comput. Sci. Eng., 23(2), 7–14. https://doi.org/10.22541/au.161298309.98344404/v3

Grout, J., Frederic, J., Corlay, S., & al., et. (2024). ipywidgets: Interactive widgets for the
Jupyter notebook. https://github.com/jupyter-widgets/ipywidgets

Guo, S., Ficarra, M., Gibbons, K., & community, E. (2023). ECMAScript® 2023 Language
Specification (14th ed.). https://262.ecma-international.org/14.0/

Heer, J., & Moritz, D. (2024). Mosaic: An architecture for scalable & interoperable data views.
IEEE Trans. Vis. Comput. Graph., 30(1), 436–446. https://doi.org/10.1109/TVCG.2023.

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

5

https://bokeh.pydata.org/en/latest
https://docs.streamlit.io/develop/concepts/custom-components/create
https://github.com/marimo-team/marimo
https://github.com/developmentseed/lonboard
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.22541/au.161298309.98344404/v3
https://github.com/jupyter-widgets/ipywidgets
https://262.ecma-international.org/14.0/
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.21105/joss.06939


3327189

Holdgraf, C., & others. (2022). Jupyter Book and MyST: A community-led, extensible,
modular ecosystem for creating computational narratives. Zenodo. https://doi.org/10.
5281/zenodo.7287626

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N., Parthasarathy, S., Rajamani, S., & Sharma,
R. (2022). Jigsaw: Large language models meet program synthesis. Proceedings of the
44th International Conference on Software Engineering, 1219–1231. https://doi.org/10.
1145/3510003.3510203

Keller, Mark S. (2024). Anyhtmlwidget. https://github.com/keller-mark/anyhtmlwidget

Keller, Mark S., Gold, I., McCallum, C., Manz, T., Kharchenko, P. V., & Gehlenborg, N. (2021).
Vitessce: A framework for integrative visualization of multi-modal and spatially-resolved
single-cell data. In OSF Preprints. https://doi.org/10.31219/osf.io/y8thv

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016).
Jupyter notebooks – a publishing format for reproducible computational workflows. In F.
Loizides & B. Scmidt (Eds.), Positioning and power in academic publishing: Players, agents
and agendas (pp. 87–90). IOS Press. https://doi.org/10.3233/978-1-61499-649-1-87

Lekschas, F., & Manz, T. (2024). Jupyter Scatter: Interactive exploration of large-scale datasets.
Journal of Open Source Software, 9(101), 7059. https://doi.org/10.21105/joss.07059

Li, H., Ying, L., Zhang, H., Wu, Y., Qu, H., & Wang, Y. (2023). Notable: On-the-fly assistant
for data storytelling in computational notebooks. Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3544548.3580965

Manz, T., Gehlenborg, N., & Abdennur, N. (2024). Any notebook served: Authoring and
sharing reusable interactive widgets. OSF Preprints. https://doi.org/10.31219/osf.io/pyn7u

Manz, T., Gold, I., Patterson, N. H., McCallum, C., Keller, M. S., Herr, B. W., 2nd, Börner,
K., Spraggins, J. M., & Gehlenborg, N. (2022). Viv: Multiscale visualization of high-
resolution multiplexed bioimaging data on the web. Nat. Methods, 19(5), 515–516.
https://doi.org/10.1038/s41592-022-01482-7

Manz, T., L’Yi, S., & Gehlenborg, N. (2023). Gos: A declarative library for interactive genomics
visualization in python. Bioinformatics, 39(1). https://doi.org/10.1093/bioinformatics/
btad050

Manz, T., Lekschas, F., Greene, E., Finak, G., & Gehlenborg, N. (2024). A general framework
for comparing embedding visualizations across class-label hierarchies. https://doi.org/10.
31219/osf.io/puxnf

Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E., & Zimmer, C. (2019). ImJoy: An
open-source computational platform for the deep learning era. Nat. Methods, 16(12),
1199–1200. https://doi.org/10.1038/s41592-019-0627-0

Perez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing.
Comput. Sci. Eng., 9(3), 21–29. https://doi.org/10.1109/MCSE.2007.53

Rudiger, P., Madsen, M. S., Hansen, S. H., Liquet, M., Andrew, Artusi, X., Bednar, J. A., B,
C., Stevens, J.-L., Signell, J., Roumis, D., Deil, C., Paprocki, M., Wu, J., Mease, J., Arne,
thuydotm, Amanieu, H.-Y., Coderambling, … TBym. (2024). Holoviz/panel: Version 1.4.4
(Version v1.4.4). Zenodo. https://doi.org/10.5281/zenodo.11403810

VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A., Lees,
E., Timofeev, I., Welsh, B., & Sievert, S. (2018). Altair: Interactive statistical visualizations
for Python. J. Open Source Softw., 3(32), 1057. https://doi.org/10.21105/joss.01057

Wang, F., Liu, X., Liu, O., Neshati, A., Ma, T., Zhu, M., & Zhao, J. (2023). Slide4N:

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

6

https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.5281/zenodo.7287626
https://doi.org/10.5281/zenodo.7287626
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://github.com/keller-mark/anyhtmlwidget
https://doi.org/10.31219/osf.io/y8thv
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.21105/joss.07059
https://doi.org/10.1145/3544548.3580965
https://doi.org/10.31219/osf.io/pyn7u
https://doi.org/10.1038/s41592-022-01482-7
https://doi.org/10.1093/bioinformatics/btad050
https://doi.org/10.1093/bioinformatics/btad050
https://doi.org/10.31219/osf.io/puxnf
https://doi.org/10.31219/osf.io/puxnf
https://doi.org/10.1038/s41592-019-0627-0
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.5281/zenodo.11403810
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.06939


Creating presentation slides from computational notebooks with human-AI collaboration.
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–18.
https://doi.org/10.1145/3544548.3580753

Wang, Z. J., Munechika, D., Lee, S., & Chau, D. H. (2024). SuperNOVA: Design strategies
and opportunities for interactive visualization in computational notebooks. Extended
Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, 1–17.
https://doi.org/10.1145/3613905.3650848

Wang, Z. J., Munechika, D., Lee, S., & Chau, D. H. (2022). NOVA: A practical method for
creating notebook-ready visual analytics. https://doi.org/10.48550/arXiv.2205.03963

Warmerdam, V. D. (2024). Drawdata. https://github.com/koaning/drawdata

Zhao, Z., Koulouzis, S., Bianchi, R., Farshidi, S., Shi, Z., Xin, R., Wang, Y., Li, N., Shi, Y.,
Timmermans, J., & Kissling, W. D. (2022). Notebook‐as‐a‐VRE (NaaVRE): From private
notebooks to a collaborative cloud virtual research environment. Softw. Pract. Exp., 52(9),
1947–1966. https://doi.org/10.1002/spe.3098

Manz et al. (2024). anywidget: reusable widgets for interactive analysis and visualization in computational notebooks. Journal of Open Source
Software, 9(102), 6939. https://doi.org/10.21105/joss.06939.

7

https://doi.org/10.1145/3544548.3580753
https://doi.org/10.1145/3613905.3650848
https://doi.org/10.48550/arXiv.2205.03963
https://github.com/koaning/drawdata
https://doi.org/10.1002/spe.3098
https://doi.org/10.21105/joss.06939

	Summary
	Statement of need
	Overview
	A standard for widget front-end modules
	Supporting tools and ecosystem
	Custom Jupyter Widgets
	Tooling for authorship and distribution
	Beyond Jupyter


	Availability
	Related work
	Acknowledgements
	Funding
	References

