
DiffeRT2d: A Differentiable Ray Tracing Python
Framework for Radio Propagation
Jérome Eertmans 1, Claude Oestges 1, and Laurent Jacques 1

1 ICTEAM, UCLouvain, Belgium
DOI: 10.21105/joss.06915

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @idoby
• @roth-jakob

Submitted: 20 June 2024
Published: 30 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Figure 1: DiffeRT2d’ logo.

Summary
Ray Tracing (RT) is arguably one of the most prevalent methodologies in the field of radio
propagation modeling. However, access to RT software is often constrained by its closed-source
nature, licensing costs, or the requirement of high-performance computing resources. While
this is typically acceptable for large-scale applications, it can present significant limitations
for researchers who require more flexibility in their approach, while working on more simple
use cases. We present DiffeRT2d, a 2D Open Source differentiable ray tracer that addresses
the aforementioned gaps. DiffeRT2d employs the power of JAX (Bradbury et al., 2024) to
provide a simple, fast, and differentiable solution. Our library can be utilized to model complex
objects, such as reconfigurable intelligent surfaces, or to solve optimization problems that
require tracing the paths between one or more pairs of nodes. Moreover, DiffeRT2d adheres
to numerous high-quality Open Source standards, including automated testing, documented
code and library, and Python type-hinting.

Statement of Need
In the domain of radio propagation modeling, a significant portion of the RT tools available
to researchers are either closed-source or locked behind commercial licenses. This restricts
accessibility, limits customization, and impedes collaborative advances in the field. Among
the limited Open Source alternatives, tools such as PyLayers (Uguen et al., 2014) and Opal
(Egea-Lopez et al., 2021) fall short by not offering the capability to easily differentiate code
with respect to various parameters. This limitation presents a substantial challenge for tasks
involving network optimization, where the ability to efficiently compute gradients is crucial. To
our knowledge, SionnaRT (Hoydis et al., 2023) is one of the few radio propagation-oriented
ray tracers that incorporates a differentiable framework, leveraging TensorFlow (Abadi et al.,
2015) to enable differentiation. Despite its capabilities, SionnaRT’s complexity can be a barrier
for researchers seeking a straightforward solution for fundamental studies in RT applied to

Eertmans et al. (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software,
9(98), 6915. https://doi.org/10.21105/joss.06915.

1

https://orcid.org/0000-0002-5579-5360
https://orcid.org/0000-0002-0902-4565
https://orcid.org/0000-0002-6261-0328
https://doi.org/10.21105/joss.06915
https://github.com/openjournals/joss-reviews/issues/6915
https://github.com/jeertmans/DiffeRT2d
https://doi.org/10.5281/zenodo.12600658
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/idoby
https://github.com/roth-jakob
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06915


radio propagation. We believe that researchers need a simple-to-use and highly interpretable
RT framework.

DiffeRT2d addresses these shortcomings by providing a comprehensive, Open Source, and
easily accessible framework specifically designed for 2D RT. It integrates seamlessly with
Python, ensuring ease of use while maintaining robust functionality. By leveraging JAX for
automatic differentiation, DiffeRT2d simplifies the process of parameter tuning and optimization,
making it an invaluable tool for both academic research and practical applications in wireless
communications.

Moreover, in contrast to the majority of other RT tools, DiffeRT2d is capable of supporting
a multitude of RT methods. These include the image method (Yun & Iskander, 2015),
path minimization based on Fermat’s principle (Puggelli et al., 2014), and the Min-Path-
Tracing method (MPT) (Eertmans et al., 2023). Each of these methods represents a distinct
compromise between speed and the type of interaction that can be simulated, such as reflection
or diffraction.

DiffeRT2d democratizes access to advanced RT capabilities, thereby fostering innovation and
facilitating rigorous exploration in the field.

Easy to Use Commitment
DiffeRT2d is a 2D RT toolbox that aims to provide a comprehensive solution for path tracing,
while avoiding the need to compute electromagnetic (EM) fields. Consequently, we provide a
rough approximation of the received power, which ignores the local phase of the wave, to allow
the user to focus on higher-level concepts, such as the number of multipath components and
the angle of arrival. As an object-oriented package with curated default values, constructing a
basic RT scenario can be performed in a minimal number of lines of code while keeping the
code extremely expressive.

Moreover, DiffeRT2d is designed to maximize its compatibility with the JAX ecosystem. It
provides JAX-compatible objects, which are immutable, differentiable, and jit-in-time compilable.
This enables users to leverage the full capabilities of other JAX-related libraries, such as Optax
(DeepMind et al., 2020) for optimization problems or Equinox (Kidger & Garcia, 2021) for
Machine Learning (ML).

Usage Examples
The documentation contains an example gallery, as well as numerous other usage examples
disseminated throughout the application programming interface (API) documentation.

In the following sections, we will highlight a few of the most attractive usages of DiffeRT2d.

Exploring Metasurfaces and More
The primary rationale for employing an object-oriented paradigm is the capacity to generate
custom subclasses, enabling the implementation of novel characteristics for a given object. This
is exemplified by metasurfaces, which typically exhibit a deviation from the conventional law of
specular reflection. Consequently, a distinct procedure must be employed for their treatment.

Using MPT, which is one of the path tracing methods implemented in DiffeRT2d, we can
easily accommodate those surfaces, thanks to the object-oriented structure of the code. We
also provide a very simple reflecting intelligent surface (RIS) to this end.

Eertmans et al. (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software,
9(98), 6915. https://doi.org/10.21105/joss.06915.

2

https://web.archive.org/web/20240628154659/https://differt2d.eertmans.be/latest/examples_gallery/
https://doi.org/10.21105/joss.06915


0.0 0.2 0.4 0.6 0.8 1.0
x coordinate

0.0

0.2

0.4

0.6

0.8

1.0

y 
co

or
di

na
te

tx

50

40

30

20

10

0

Po
we

r (
dB

)

Figure 2: A coverage map for single-reflection paths (i.e., no line-of-sight) in a scene containing a RIS.
The RIS, situated in the center, reflects rays at an angle of 45°, as evidenced by the fixed reflection angle
of the reflected rays, irrespective of the angle of incidence. The minor noise observed around the edges
is attributed to convergence issues with the MPT method, which can be mitigated by increasing the
number of minimization steps.

Figure 2 can be reproduced with the following code:

import jax

import jax.numpy as jnp

import matplotlib.pyplot as plt

from differt2d.geometry import RIS, MinPath

from differt2d.scene import Scene

from differt2d.utils import P0, received_power

scene = Scene.square_scene()

ris = RIS(

xys=jnp.array([[0.5, 0.3], [0.5, 0.7]]),

phi=jnp.pi / 4,

)

scene = scene.add_objects(ris)

fig, ax = plt.subplots()

annotate_kwargs = dict(color="white", fontsize=12, fontweight="bold")

key = jax.random.PRNGKey(1234)

X, Y = scene.grid(n=300)

scene.plot(

ax,

transmitters_kwargs=dict(annotate_kwargs=annotate_kwargs),

receivers=False,

)

P = scene.accumulate_on_receivers_grid_over_paths(

Eertmans et al. (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software,
9(98), 6915. https://doi.org/10.21105/joss.06915.

3

https://doi.org/10.21105/joss.06915


X,

Y,

fun=received_power,

path_cls=MinPath,

order=1,

reduce_all=True,

path_cls_kwargs={"steps": 1000},

key=key,

)

PdB = 10.0 * jnp.log10(P / P0)

im = ax.pcolormesh(

X,

Y,

PdB,

vmin=-50,

vmax=5,

zorder=-1,

)

cbar = fig.colorbar(im, ax=ax)

cbar.ax.set_ylabel("Power (dB)")

ax.set_xlabel("x coordinate")

ax.set_ylabel("y coordinate")

plt.show()

Network optimization
In previous work, we presented a smoothing technique (Eertmans, Jacques, et al., 2024) that
makes RT differentiable everywhere. The aforementioned technique is available throughout
DiffeRT2d via an optional approx (for approximation) parameter, or via a global config variable.

Figure 3 shows how we used the Adam optimizer (Kingma & Ba, 2017), provided by the Optax
library, to successfully solve some optimization problem.

0 1
x coordinate

0.00

0.25

0.50

0.75

1.00

y 
co

or
di

na
te

tx

rx_0 rx_1

Iterations: 20

0 1
x coordinate

tx

rx_0 rx_1

Iterations: 40

0 1
x coordinate

txrx_0 rx_1

Iterations: 60

0 1
x coordinate

txrx_0 rx_1

Iterations: 80

Figure 3: Different numbers of iterations converging towards the maximum of the objective function, see
Eertmans, Jacques, et al. (2024) for all details.

The code to reproduce the above results can be found in the GitHub repository.

Eertmans et al. (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software,
9(98), 6915. https://doi.org/10.21105/joss.06915.

4

https://web.archive.org/web/20240628155050/https://github.com/jeertmans/DiffeRT2d/blob/main/papers/joss/plot_optimize_steps.py
https://doi.org/10.21105/joss.06915


Machine Learning
In Eertmans, Oestges, et al. (2024), presented at a scientific meeting in Helsinki, June 2024,
as part of the European Cooperation in Science and Technology (COST) action INTERACT
(CA20120), we developed an ML model that learns how to sample path candidates to accelerate
RT in general.

The model and its training were implemented using the DiffeRT2d library, and a detailed
notebook is available online.

Stability and releases
A significant amount of effort has been invested in the documentation and testing of our code.
All public functions are annotated, primarily through the use of the jaxtyping library (Kidger,
2024), which enables both static and dynamic type checking. Furthermore, we aim to maintain
a code coverage metric of 100%.

Our project adheres to semantic versioning, and we document all significant changes in a
changelog file.

Target Audience
The intended audience for this software is researchers engaged in the field of radio propagation
who are interested in simulating relatively simple scenarios. In such cases, the ease of use,
flexibility, and interpretability of the software are of greater importance than performing
city-scale simulations or computing electromagnetic fields1 with high accuracy.

Acknowledgments
We would like to acknowledge the work from all contributors of the JAX ecosystem, especially
Patrick Kidger for the jaxtyping and Equinox packages.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2024). JAX: Composable
transformations of Python+NumPy programs (Version 0.4.28). http://github.com/google/
jax

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P.,
Budden, D., Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones,
C., Hemsley, R., Hennigan, T., Hessel, M., Hou, S., … Viola, F. (2020). The DeepMind
JAX Ecosystem. http://github.com/google-deepmind

Eertmans, J., Jacques, L., & Oestges, C. (2024). Fully differentiable ray tracing via discontinuity
smoothing for radio network optimization. 2024 18th European Conference on Antennas
and Propagation (EuCAP), 1–5. https://doi.org/10.23919/EuCAP60739.2024.10501570

1While this is currently not part of our API, we do not omit the possibility to include more complex EM
routines in the future.

Eertmans et al. (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software,
9(98), 6915. https://doi.org/10.21105/joss.06915.

5

https://web.archive.org/web/20240628155127/https://interactca20120.org/
https://web.archive.org/web/20240628154718/https://differt2d.eertmans.be/latest/notebooks/cost20120_helsinki_model.html
https://www.tensorflow.org/
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google-deepmind
https://doi.org/10.23919/EuCAP60739.2024.10501570
https://doi.org/10.21105/joss.06915


Eertmans, J., Oestges, C., & Jacques, L. (2023). Min-Path-Tracing: A diffraction aware
alternative to image method in ray tracing. 2023 17th European Conference on Antennas
and Propagation (EuCAP), 1–5. https://doi.org/10.23919/EuCAP57121.2023.10132934

Eertmans, J., Oestges, C., Jacques, L., & others. (2024). Learning to sample ray paths
for faster point-to-point ray tracing. In COST INTERACT 8th Meeting (Helsinki, from
2024/06/17 to 2024/06/20). http:// hdl.handle.net/2078/288635

Egea-Lopez, E., Molina-Garcia-Pardo, J. M., Lienard, M., & Degauque, P. (2021). Opal: An
open source ray-tracing propagation simulator for electromagnetic characterization. PLOS
ONE, 16(11), 1–19. https://doi.org/10.1371/journal.pone.0260060

Hoydis, J., Aoudia, F. A., Cammerer, S., Nimier-David, M., Binder, N., Marcus, G., & Keller,
A. (2023). Sionna RT: Differentiable ray tracing for radio propagation modeling. 2023 IEEE
Globecom Workshops (GC Wkshps), 317–321. https://doi.org/10.1109/GCWkshps58843.
2023.10465179

Kidger, P. (2024). jaxtyping: Type annotations and runtime checking for shape and dtype of
JAX arrays, and PyTrees (Version 0.2.29). http://github.com/patrick-kidger/jaxtyping

Kidger, P., & Garcia, C. (2021). Equinox: Neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming Workshop at Neural Information
Processing Systems 2021.

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization. https:
//arxiv.org/abs/1412.6980

Puggelli, F., Carluccio, G., & Albani, M. (2014). A novel ray tracing algorithm for scenarios
comprising pre-ordered multiple planar reflectors, straight wedges, and vertexes. IEEE
Transactions on Antennas and Propagation, 62(8), 4336–4341. https://doi.org/10.1109/
TAP.2014.2323961

Uguen, B., Amiot, N., Laaraiedh, M., Mhedhbi, M., Avrillon, S., Burghelea, R., Plouhinec,
E., Talom, F. T., Chaluyman, T., & Lei, Y. (2014). Advanced radio channel simulator
(Version 0.5). http://github.com/pylayers/pylayers

Yun, Z., & Iskander, M. F. (2015). Ray tracing for radio propagation modeling: Principles and
applications. IEEE Access, 3, 1089–1100. https://doi.org/10.1109/ACCESS.2015.2453991

Eertmans et al. (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software,
9(98), 6915. https://doi.org/10.21105/joss.06915.

6

https://doi.org/10.23919/EuCAP57121.2023.10132934
http://%20hdl.handle.net/2078/288635
https://doi.org/10.1371/journal.pone.0260060
https://doi.org/10.1109/GCWkshps58843.2023.10465179
https://doi.org/10.1109/GCWkshps58843.2023.10465179
http://github.com/patrick-kidger/jaxtyping
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TAP.2014.2323961
https://doi.org/10.1109/TAP.2014.2323961
http://github.com/pylayers/pylayers
https://doi.org/10.1109/ACCESS.2015.2453991
https://doi.org/10.21105/joss.06915

	Summary
	Statement of Need
	Easy to Use Commitment
	Usage Examples
	Exploring Metasurfaces and More
	Network optimization
	Machine Learning

	Stability and releases
	Target Audience

	Acknowledgments
	References

