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Summary
In this paper, we present our scalable dynamic adaptive mesh refinement (AMR) library t8code,
which was officially released in 2022 (Holke et al., 2022). t8code is written in C/C++, open
source, and readily available at dlr-amr.github.io/t8code. It is developed and maintained at
the Institute of Software Technology of the German Aerospace Center (DLR). AMR is a widely
used method of locally adapting the mesh resolution according to an adequate error indicator
in grid-based applications, especially in the context of computational fluid dynamics. Our
software library provides fast and memory efficient parallel algorithms for dynamic AMR to
handle tasks such as mesh adaptation, load-balancing, ghost computation, feature search and
more. t8code can manage meshes with over one trillion mesh elements (Holke et al., 2021)
and scales up to one million parallel processes (Holke, 2018). It is intended to be used as a
mesh management backend in scientific and engineering simulation codes, paving the way
towards high-performance applications in the upcoming exascale era.

Statement of Need
Adaptive Mesh Refinement has been established as a successful approach for scientific and
engineering simulations over the past decades (Babuvška & Rheinboldt, 1978; Bangerth et al.,
2007; Dörfler, 1996; Teunissen & Keppens, 2019). By modifying the mesh resolution locally
according to problem specific indicators, the computational power is efficiently concentrated
where needed and the overall memory usage is reduced by orders of magnitude. However,
managing adaptive meshes and associated data is a very challenging task, especially for parallel
codes. Implementing fast and scalable AMR routines generally leads to a large development
overhead motivating the need for external mesh management libraries like t8code. Our target
audiences are scientists and application developers working on grid-based simulation and
visualization frameworks who are looking for a comprehensive and versatile mesh management
solution. Besides offering AMR, we also aim to lower the threshold to parallelize their codes by
solely interacting with t8code’s API. Alternative AMR libraries with a similar range of features
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are p4est (Burstedde et al., 2011a), libMesh (Kirk et al., 2006), PARAMESH (MacNeice et
al., 2000), and SAMRAI (Gunney, 2013).

In contrast to the other AMR solutions, only t8code natively supports recursive refinement on
a wide range of element types: vertices, lines, quadrilaterals, triangles, hexahedra, tetrahedra,
prisms, and pyramids. Additionally, extensions to other refinement patterns and element shapes
are straightforwardly supported due to t8code’s modular code structure and clear distinction
between low- and high-level mesh operations. This gives our AMR solution an unique position in
the market catering to a wide range of use cases. Currently, t8code is optimized for grid-based
applications using face-to-face connectivity between elements, such as Finite-Volume and
Discontinuous Galerkin methods. In the future, we plan to support node-to-node connectivity
and hanging nodes resolution to further increase the range of applications, such as Finite
Element methods.

Example application
Figure 1 depicts an example adapted mesh managed by t8code using two different element
types: quads and triangles. The temperature profile of a convection simulation of a model
planet’s mantle (source: Institute of Planetary Research, DLR) is shown. The original, uniform
mesh consists of over 158 million quad cells allocating 6.818 GB of memory. By applying AMR
to the data, the memory usage can be reduced down to 20% with a compression error of less
than 1%. The error measure was chosen to be the norm of the variance between refinement
resp. coarsening steps. That is, starting from the uniform mesh at highest refinement level
(𝑙 = 8), the mesh was successively coarsened until the disagreement from the original data
reached 1%. It should be noted that t8code’s primary objective is to provide flexible adaptive
mesh management. The layout of the data inside an element and its interpretation regarding,
for example, when and how to refine/coarsen is up to the application.

Figure 1: Visualization of a planetary mantle convection simulation (source: Institute of Planetary
Research, DLR). Shown is the 2D slice of the temperature profile. Left: original uniform data. The
highlighting of the grid lines was omitted for visual clarity. Middle: adapted mesh with quad elements.
Right: adapted mesh with triangle elements. The original data living on a uniform quad mesh was first
transferred to a triangle mesh and adapted afterwards. This shows the versatility of t8code regarding to
the choice of mesh elements.

Fundamental Concepts
t8code is based on the forest-of-trees approach. The starting point for usage of t8code is an
unstructured conformal input mesh, which we denote a coarse mesh. This coarse mesh describes
the geometry of the computational domain and is usually provided by a mesh generator such as
Gmsh (Geuzaine & Remacle, 2009). Each of the coarse mesh cells is then viewed as the root
of a refinement tree. These trees are refined recursively in a structured pattern, resulting in a
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collection of trees, which we call a forest. t8code stores only a minimal amount of information
about the finest elements of the mesh—the leaves of the trees—in order to reconstruct the
whole forest.

By enumerating the leaves in a recursive refinement pattern we obtain a space-filling curve
(SFC) logic. Via these SFCs, all elements in a refinement tree are assigned an integer-based
index and are stored in linear order. Element coordinates or element neighbors do not need to
be stored explicitly but can be reconstructed from the SFC index. Fast bitwise SFC operations
ensure optimal runtimes and diminish the need for memory lookups. Moreover, the SFC is
used to distribute the forest mesh across multiple processes, so that each process only stores a
unique portion of the SFC. See Figure 2 for an illustration of the concept.

While being successfully applied to quadrilateral and hexahedral meshes (Burstedde et al.,
2011b; Weinzierl, 2019), these SFC techniques are extended by t8code in a modular fashion,
such that arbitrary element shapes are supported. We achieve this modularity through a novel
decoupling approach that separates high-level (mesh global) algorithms from low-level (element
local) implementations. All high-level algorithms can be applied to different implementations
of element shapes and refinement patterns. A mix of different element shapes in the same
mesh is also supported.

Mesh adaptation as it is done in t8code leads to hanging nodes. Numerical methods have to
specifically handle these non-conforming interfaces. Finite-Volume schemes or Discontinuous
Galerkin methods naturally treat this problem via so-called mortar methods. In the future, it
is planned to also support hanging nodes resolving routines by inserting transition elements
conformally connecting elements at different refinement levels.

Figure 2: Left: Exemplary t8code forest mesh consisting of two trees (k0, k1) distributed over three
parallel processes p0 to p2. The SFC is represented by a black curve tracing only the finest elements
(leaves) of each tree. Right: Sketch of the associated mixed shape (a triangle and a quad) mesh refined
up to level three.

Performance
t8code supports distributed coarse meshes of arbitrary size and complexity, which we tested
for up to 370 million coarse mesh cells (Burstedde & Holke, 2017). Moreover, we conducted
various performance studies on the JUQUEEN and the JUWELS supercomputers at the Jülich
Supercomputing Center. In Table 1, (Holke et al., 2021) we show that t8code’s ghost routine
is exceptionally fast with proper scaling of up to 1.1 trillion mesh elements. Computing ghost
layers around parallel domains is usually the most expensive of all mesh operations. To put
these results into perspective, we conducted scaling tests on the terrabyte cluster at Leibniz
Supercomputing Centre comparing the ghost layer creation runtimes of p4est and t8code. In
Figure 3 the measured runtimes of both libraries are plotted over the number of processes. The
p4est library has been established as one of the most performant meshing libraries (Burstedde
et al., 2011a) specializing on adaptive quadrilateral and hexahedral meshes. Clearly, t8code
shows near perfect scaling for tetrahedral meshes on par with p4est. The absolute runtime
of t8code is around 1.5 times the runtime of p4est measured on a per ghost element basis.

Holke et al. (2025). t8code - modular adaptive mesh refinement in the exascale era. Journal of Open Source Software, 10(106), 6887.
https://doi.org/10.21105/joss.06887.

3

https://doi.org/10.21105/joss.06887


This is expected since the ghost layer algorithm is more complex and thus a bit less optimized,
while supporting a wider range of element types.

Furthermore, in a prototype code (Dreyer, 2021) implementing a high-order Discontinuous
Galerkin (DG) method for advection-diffusion equations on dynamically adaptive hexahedral
meshes, we can report of a 12 times speed-up compared to non-AMR meshes with only an
overall 15% runtime contribution of t8code. In Figure 4 we compare the runtimes over number
of processes of the DG solver and the summed mesh operations done by t8code, which are ghost
computation, ghost data exchange, partitioning (load balancing), refinement, and coarsening,
as well as balancing ensuring only a difference of one refinement level among element’s face
neighbors. From the graphs in Figure 4 we clearly see that t8code only takes around 15% to
20% of overall runtime compared to the solver.

# Process # Elements # Elem. / process Ghost
49,152 1,099,511,627,776 22,369,621 2.08 s
98,304 1,099,511,627,776 11,184,811 1.43 s
Table 1: Runtimes on JUQUEEN for the ghost layer computation for a distributed mesh

consisting of 1.1 trillion elements.

Figure 3: Runtimes of ghost layer creation on the terrabyte cluster for p4est and t8code. The meshes
have been refined into a Menger sponge for the hexahedral mesh with p4est (max. level 12) and a
Sierpinski sponge for the tetrahedral mesh in t8code (max. level 13) to create a fractal pattern with
billions of elements as a stress test. To make the two runs comparable, the runtimes have been divided
by the average local number of ghost elements on a MPI rank.
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Figure 4: Runtimes on JUQUEEN of the solver and summed mesh operations of our DG prototype code
coupled with t8code. Mesh operations are ghost computation, ghost data exchange, partitioning (load
balancing), refinement, and coarsening, as well as balancing (max. difference of one level of refinement
of neighboring elements). t8code only takes around 15% to 20% of the overall runtime.

Research Projects
Even though t8code is a newcomer to the market, it is already in use as the mesh management
backend in various research projects, most notably in the earth system modeling (ESM)
community. In the ADAPTEX project, t8code is integrated with the Trixi framework (Schlottke-
Lakemper et al., 2020), a modern computational fluid dynamics code written in Julia. Over
the next years several ESM applications are planned to couple to this combination, including
MESSy, MPTrac and SERGHEI. Moreover, t8code also plays an important role in several DLR
funded research projects, e.g., VisPlore (massive data visualization), HYTAZER (hydrogen
tank certification), and Greenstars (additive rocket engine manufacturing).

Further Information
For further information beyond this short note and also for code examples, we refer to
our Documentation and Wiki reachable via our homepage dlr-amr.github.io/t8code and our
technical publications on t8code (Becker, 2021; Burstedde & Holke, 2016, 2017; Dreyer, 2021;
Elsweijer, 2021, 2022; Fußbroich, 2023; Holke, 2018; Holke et al., 2021, 2022; Knapp, 2020;
Lilikakis, 2022).
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