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Summary
Time-series data analysis is of interest in a huge number of different applications, from finding
patterns of energy consumption to detecting brain activity or discovering stock price trends.
Unsupervised learning methods can help analysts unlock patterns in data, and a key example
of this is clustering. However, clustering of time series data can be computationally expensive
for large datasets. We present an approach for computationally efficient dynamic time warping
(DTW) and clustering of time-series data. The method frames the dynamic warping of time
series datasets as an optimisation problem solved using dynamic programming, and then
clusters time series data by solving a second optimisation problem using integer programming.
There is also an option to use k-medoids clustering when a certificate for global optimality
is not essential. The increased speed of our approach is due to task-level parallelisation and
memory efficiency improvements. The method was tested using the UCR Time Series Archive,
and was found to be on average 33% faster than the next fastest option when using the same
clustering approach. This increases to 64% faster when considering only larger datasets (with
more than 1000 time series). The integer programming clustering is most effective on small
numbers of longer time series, because the DTW computation is faster than other approaches,
but the clustering problem becomes increasingly computationally expensive as the number of
time series increases.

Statement of need
The target audience for this software is very broad, since clustering of time series data
is relevant in many applications from energy to finance and medicine. However, as data
availability increases, so does the complexity of the clustering problem. Most time series
clustering algorithms depend on dimension reduction or feature extraction techniques to enable
scaling to large datasets, but this can induce bias in the clustering (Aghabozorgi et al., 2015).
Dynamic time warping (Sakoe & Chiba, 1978) is a well-known technique for manipulating time
series to enable comparisons between datasets, using local warping (stretching or compressing
along the time axis) of the elements within each time series to find an optimal alignment
between series. This emphasises the similarity of the shapes of the respective time series rather
than the exact alignment of specific features. Unfortunately, DTW does not scale well in
computational speed as the length and number of time series to be compared increases—the
computational complexity grows quadratically with the total number of data points. This is
a barrier to DTW being widely implemented in large-scale time series clustering (Rajabi et
al., 2020). In response, DTW-C++ was written to handle large time series efficiently, directly
processing the raw data rather than first extracting features.

In contrast to existing tools available for time series clustering using DTW, such as
DTAIDistance (Meert et al., 2022) and TSlearn (Tavenard et al., 2020), DTW-C++ offers
significant improvements in speed and memory use, enabling larger datasets to be clustered.
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This is achieved by

1. task-level parallelisation, where multiple pairwise comparisons between time series can
be evaluated simultaneously, and,

2. improved memory management—since the clustering algorithm only needs the final
distance computed between pairwise time series, the DTW distance computation stores
only the most recent previous vector, rather than the entire warping matrix.

In addition, DTW-C++ offers the option of clustering using a new algorithm (described below)
based on integer programming. The advantage of this over k-based methods is that it
guarantees finding a global optimal solution in most cases, and in the rare event that the global
optimum cannot be found, the gap between the best solution and the global optimum is given.

Current DTW-C++ functionality
The current functionality of the software is:

• Calculate DTW pairwise distances between all pairs of time series in a set, using a vector
based approach to reduce memory use. There is also the option to use a Sakoe-Chiba
band to restrict warping in the DTW distance calculation (Sakoe & Chiba, 1978). This
speeds up the computation time, as well as being a useful constraint for some clustering
scenarios (e.g., if an event must occur within a certain time window to be considered
similar).

• Produce a distance matrix containing all pairwise comparisons between each time series
in the dataset.

• Split all time series into a predefined number of clusters, with a representative centroid
time series for each cluster. This can be done using integer programming or k-medoids
clustering, depending on user choice.

• Output the clustering cost, which is the sum of distances between every time series
within each cluster and its cluster centroid.

• Find the silhouette score and elbow score for the clusters to aid the user decision on how
many clusters, 𝑘, to include. The silhouette score is defined by the difference between
the mean intra-cluster distance and the mean nearest-cluster distance, divided by the
maximum of these two distances (Rousseeuw, 1987). This considers both the similarity
of a time series to its own cluster as well as its dissimilarity from other clusters. The
elbow score is based on the cost of the clustering exercise, which sums together the
distance between each time series and its centroid. Therefore the similarity of a time
series to its own cluster is considered, but not its dissimilarity from other clusters.

Mathematical background

Dynamic time warping
Consider a time series to be a vector of arbitrary length. Consider that we have 𝑝 such vectors
in total, each possibly differing in length. To find a subset of 𝑘 clusters within the set of 𝑝
vectors, we must first make 1

2(
𝑝
2) pairwise comparisons between all vectors within the total set

and find the ‘similarity’ between each pair. In this case, the similarity is defined as the DTW
distance. Consider two time series 𝑥 and 𝑦 of differing lengths 𝑛 and 𝑚 respectively,

𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛)
𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑚).

The DTW distance is the sum of the Euclidean distance between each point and its matched
point(s) in the other vector, as shown in Figure 1. To find the DTW distance, the following
constraints must be met:
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1. The first and last elements of each series must be matched.
2. Only unidirectional forward movement through relative time is allowed, i.e., if 𝑥1 is

mapped to 𝑦2 then 𝑥2 may not be mapped to 𝑦1 (monotonicity).
3. Each point is mapped to at least one other point, i.e., there are no jumps in time

(continuity).

Figure 1: (a) Two time series with DTW pairwise alignment between each point, showing the one-to-many
mapping properties of DTW. (b) Cost matrix 𝐶 for the two time series, showing the warping path and
final DTW cost at 𝑐14,13.

Finding the optimal warping arrangement is an optimisation problem that can be solved using
dynamic programming, which splits the problem into easier sub-problems and solves them
recursively, storing intermediate solutions until the final solution is reached. To understand
the memory-efficient method used in DTW-C++, it is useful to first examine the full cost matrix
solution, as follows. For each pairwise comparison, an 𝑛 by 𝑚 matrix 𝐶𝑛×𝑚 is calculated,
where each element represents the cumulative cost between series up to the points 𝑥𝑖 and 𝑦𝑗:

𝑐𝑖,𝑗 = (𝑥𝑖 − 𝑦𝑗)2 +min
⎧{
⎨{⎩

𝑐𝑖−1,𝑗−1
𝑐𝑖−1,𝑗
𝑐𝑖,𝑗−1

(1)

The final element in the matrix 𝑐𝑛,𝑚 is then the total cost, and this provides the metric for
comparing the two series 𝑥 and 𝑦. Figure 1 shows an example of this cost matrix 𝐶 and the
warping path through it.

Clustering
For the clustering algorithm, only the final cost for each pairwise comparison is required; the
actual warping path (i.e., mapping between time series) is superfluous. The memory complexity
of the cost matrix 𝐶 is 𝒪(𝑛𝑚), so as the length of the time series grows, the memory required
greatly increases. Therefore, significant reductions in memory use can be achieved by not
storing the entire cost matrix. Since the warping path is not required, we only need to store a
vector containing the previous row relating to the current step of the dynamic programming
sub-problem (i.e., the previous three values 𝑐𝑖−1,𝑗−1, 𝑐𝑖−1,𝑗, 𝑐𝑖,𝑗−1), as indicated in Equation 1.

We now introduce the notation 𝑑𝑥,𝑦 = 𝑐𝑛,𝑚 to denote the final (scalar) cost relating to the
pairwise comparison between time series 𝑥 and 𝑦, given by the final element in the cost matrix
relating to the 𝑥 and 𝑦 time series. To cluster several time series, this cost is first computed for
every pairwise comparison between every time series. As shown in Figure 2, all of the pairwise
distances are then stored in a separate symmetric matrix, 𝐷𝑝×𝑝, where 𝑝 is the total number
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of time series in the clustering exercise. In other words, the element 𝑑𝑖,𝑗 in this matrix gives
the cost between time series 𝑖 and 𝑗.

0 𝑑1,2 𝑑1,3 𝑑1,4

𝑑1,2 0 𝑑2,3 𝑑2,4

𝑑1,3 𝑑2,3 0 𝑑3,4

𝑑1,4 𝑑2,4 𝑑3,4 0

𝐷

…

…

𝑑1,𝑝 𝑑2,𝑝 𝑑3,𝑝 𝑑4,𝑝

𝑑1,𝑝

𝑑2,𝑝

𝑑3,𝑝

𝑑4,𝑝

0

𝑐𝑛,𝑚
(1,3)

𝑐𝑛,𝑚
(1,2)

𝑐𝑛,𝑚
(1,1)

…

𝑐𝑛,𝑚
(𝑝,𝑝−1)

𝑐𝑛,𝑚
(𝑥,𝑦)

= 𝑑𝑥,𝑦

Figure 2: The individual DTW costs from each pairwise comparison between time series in the dataset
are all combined to form a distance matrix 𝐷.

Using this distance matrix, 𝐷, the full set of time series can be split into 𝑘 separate clusters
with integer programming. The problem formulation begins by considering a binary square
matrix 𝐴𝑝×𝑝, where 𝐴𝑖𝑗 = 1 if time series 𝑗 is a member of the 𝑖th cluster centroid, and 0
otherwise, as shown in Figure 3.

0 0 0 0 0

1 1 0 0 1

0 0 0 0 0

0 0 1 1 0

0 0 0 0 0

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑗1 𝑗2 𝑗3 𝑗4 𝑗5

𝐴

Cluster centers are 

non-zero rows, with 

each member, 1, and 

non-members, 0

Each time series must 

be in 1 cluster; so, the 

sum of each column = 1

The diagonal 

indicates the 

centroids

Figure 3: Example clustering matrix, where an entry of 1 indicates that time series 𝑗 belongs to the
cluster with centroid 𝑖.

As each centroid has to be in its own cluster, non-zero diagonal entries in 𝐴 represent centroids.
Our objective is to find 𝐴, and this may be formulated as an optimisation problem

𝐴⋆ = argmin
𝐴

∑
𝑖

∑
𝑗

𝐷𝑖𝑗 ×𝐴𝑖𝑗, (2)

subject to the following constraints:

1. Only 𝑘 series can be centroids,
𝑝

∑
𝑖=1

𝐴𝑖𝑖 = 𝑘.

2. Each time series must be a member of one and only one cluster,
𝑝

∑
𝑖=1

𝐴𝑖𝑗 = 1 ∀𝑗 ∈ [1, 𝑝].

Kumtepeli et al. (2024). DTW-C++: Fast dynamic time warping and clustering of time series data. Journal of Open Source Software, 9(101),
6881. https://doi.org/10.21105/joss.06881.

4

https://doi.org/10.21105/joss.06881


3. In any row, there can only be non-zero entries if the corresponding diagonal entry is
non-zero, so a time series can only be in a cluster where the row corresponds to a
centroid time series,

𝐴𝑖𝑗 ≤ 𝐴𝑖𝑖 ∀𝑖, 𝑗 ∈ [1, 𝑝].

This integer program is solved in DTW-C++ using Gurobi (Gurobi Optimization, LLC, 2024) or
HiGHS (Huangfu & Hall, 2018). After solution, the non-zero diagonal entries of 𝐴 represent
the centroids, and the non-zero elements in the corresponding columns in 𝐴 represent the
members of that cluster. In the example in Figure 3, the clusters are time series 1, 2, 5 and 3,
4 with the bold type face entries indicating the centroids.

Finding a globally optimal solution with this method can result in increased computation
times depending on the number of time series within the dataset and the DTW distances.
Therefore, there is also a built-in option to cluster using k-medoids, as used in other packages
such as DTAIDistance (Meert et al., 2022). The k-medoids method is often quicker as it is an
iterative approach, however it is subject to getting stuck in local optima. The results in the
next section show the timing and memory performance of both integer programming clustering
and k-medoids clustering using DTW-C++ compared to other packages.

Comparison
We compared our approach with two other DTW clustering packages, DTAIDistance (Meert
et al., 2022) and TSlearn (Tavenard et al., 2020) using data from the UCR Time Series
Classification Archive Dau et al. (2019), which consists of 128 time series datasets with up to
16,800 data series of lengths up to 2,844. Benchmarking against TSlearn was stopped after
the first 22 datasets because the results were consistently over 20 times slower than DTW-C++.
Table 1 shows the results for datasets downselected to have the number of time series, 𝑁,
greater than 100, and the length of each time series greater than 500 points. This is because
DTW-C++ is aimed at larger datasets where the speed improvements are more relevant.

DTW-C++ is the fastest package for 90% of the datasets, and all 13 datasets where DTAIDistance

was faster were cases where the entire clustering process was completed in 1.06 seconds or less.
Across the whole collection of datasets, DTW-C++ was on average 32% faster. When looking at
larger datasets, with 𝑁 > 1000, DTW-C++ is on average 65% faster. In all, apart from 2 of
the 115 cases where DTW-C++ is the fastest, we used the k-medoids algorithm for clustering.
Figure 4 shows the increasing performance of DTW-C++ as the number of time series increases.
In this comparison, both algorithms used k-medoids, so the speed improvement is due to faster
dynamic time warping method in DTW-C++.

With respect to clustering, DTW-C++ with integer programming was on average 16 times slower
than DTAIDistance over all samples, and as the number of time series increases, integer
programming clustering becomes increasingly slower (Figure 5). This is to be expected
because the computational complexity of the integer programming optimisation increases
significantly as the number of time series in the clustering problem increases. However, as
the lengths of each time series increase, the performance of integer programming converges
to the speed of DTAIDistance, and the former finds globally optimal results. Therefore, the
integer programming approach is recommended for occasions when the individual time series
to be clustered are very long, but the number of individual time series is small (e.g., fewer
than 1000).

The performance comparison on all datasets in the UCR Time Series Classification Archive
and any updated benchmarking tests can be found in the repository.
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Number of
time series

Length of
time series

DTW-C++
IP (s)

DTW-C++
k-Medoids
(s)

DTAI Dis-
tance* (s)

Time de-
crease
(%)

CinCECGTorso 1380 1639 3008.4 1104.2 1955.9 44
Computers 250 720 16.1 10.5 12.8 18
Earthquakes 139 512 3.2 2.4 2.5 3
EOGHorizontalSignal 362 1250 81.8 27.6 82.9 67
EOGVerticalSignal 362 1250 85.9 30.2 85.2 65
EthanolLevel 500 1751 325.7 198.9 302.3 34
HandOutlines 370 2709 383.7 280.9 415.9 32
Haptics 308 1092 65.5 24.0 45.5 47
HouseTwenty 119 2000 23.8 19.1 22.0 13
InlineSkate 550 1882 412.4 198.9 423.4 53
InsectEPGRegularTrain 249 601 12.3 5.6 8.9 37
InsectEPGSmallTrain 249 601 11.6 5.3 8.9 41
LargeKitchenAppliances 375 720 44.6 25.6 31.8 20
Mallat 2345 1024 2948.7 517.0 2251.3 77
MixedShapesRegularTrain 2425 1024 2811.8 1221.9 2367.1 48
MixedShapesSmallTrain 2425 1024 2793.7 934.0 2369.3 61
NonInvasiveFetalECGThorax1 1965 750 52599.0 128.7 941.9 86
NonInvasiveFetalECGThorax2 1965 750 4905.4 115.6 951.0 88
Phoneme 1896 1024 46549.0 198.4 1560.6 87
PigAirwayPressure 208 2000 84.6 56.7 73.2 23
PigArtPressure 208 2000 78.9 41.8 71.1 41
PigCVP 208 2000 73.5 51.7 69.5 26
RefrigerationDevices 375 720 36.8 20.3 28.4 28
ScreenType 375 720 38.6 16.1 28.5 43
SemgHandGenderCh2 600 1500 335.9 315.2 325.4 3
SemgHandMovementCh2 450 1500 177.7 107.2 181.1 41
SemgHandSubjectCh2 450 1500 186.4 96.7 177.6 46
ShapesAll 600 512 67.5 15.1 44.4 66
SmallKitchenAppliances 375 720 41.7 23.8 30.1 21
StarLightCurves 8236 1024 N/A 18551.7 27558.1 33
UWaveGestureLibraryAll 3582 945 N/A 1194.6 4436.9 73
*Benchmark results for Python libraries may include an overhead of 10% due to the usage of the tracemalloc library.

Table 1: Computational time comparison between DTW-C++ using integer programming and k-medoids, vs.
DTAIDistance, and TSlearn, on datasets in the UCR Time Series Classification Archive where 𝑁 > 100
and 𝐿 > 500. The fastest result for each dataset is in bold type.
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Figure 4: DTW-C++ with k-medoids clustering becomes increasingly faster compared to DTAIDistance as
the number of time series increases.
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Figure 5: Change in computational time of DTW-C++ using integer programming clustering compared
with DTAIDistance as the number of time series in the datasets to be clustered increases and the length
of time series in the datasets increases.
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