
Fraggler: A Python Package and CLI Tool for
Automated Fragment Analysis
William Rosenbaum 1,2¶ and Pär Larsson2

1 Department of Medical Biosciences, Umeå University, SE-90185, Umeå, Sweden 2 Clinical Genomics
Umeå, Umeå University, SE-90185, Umeå, Sweden ¶ Corresponding author

DOI: 10.21105/joss.06869

Software
• Review
• Repository
• Archive

Editor: Charlotte Soneson
Reviewers:

• @kdm9
• @KatyBrown

Submitted: 20 May 2024
Published: 26 August 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Fragment Analysis (FA) is a PCR based technique which separates DNA fragments according to
their sizes using a capillary electrophoresis instrument. PCR products are marked by fluorescent
dyes and the intensities and migration time of the emitted signal are measured (Covarrubias-
Pazaran et al., 2016; van Steenderen, 2022). This enables a multitude of applications
including Sanger sequencing, microsatellite marker analysis, multiplex ligation-dependent probe
amplification assays, and more.

Although Next Generation Sequencing (NGS) technologies are becoming more widely used
in genetic research and clinical diagnosis, older PCR based techniques, such as FA, still play
an important role due to their robustness and low cost (Covarrubias-Pazaran et al., 2016;
McCafferty et al., 2012). Even though NGS has many benefits over FA, FA is in many cases
still the preferable choice, especially if the number of samples is limited or when genomic
regions of interest are few (Darby et al., 2016). Overall, FA is still a valuable tool due to its
fast turnaround time, sensitivity, and cost.

Here, we describe Fraggler – a Python based software available both as a command line tool
and a Python package for FA. At its core, Fraggler generates easy to interpret HTML reports
with plots and statistics for each .fsa file with FA data. Example of content in the report can
be seen in Figure 1.

As a test application for Fraggler, we used the Paralog Ratio Test (PRT) that enables
detection of copy number variations (CNVs) (Algady et al., 2021). CNVs can influence the
phenotype of individuals via gene dosage effects without changing the gene function (McCarroll
& Altshuler, 2007; Polley et al., 2015). Many examples of genes with various CNVs exist, where
the difference in copy number can affect the susceptibility to various infections (Armour et al.,
2007; Polley et al., 2015; Royo et al., 2015). PRT is used to quantify copy number differences
using a single primer pair that amplifies targets both within and outside a multiplicated region,
but result in different fragment sizes. The ratio of peak areas corresponding to fragments
from the reference region and the test region is calculated, allowing for inference of copy
number differences (Royo et al., 2015). PRT requires both size determination of fragments
and quantification of peak areas, thus providing a suitable test case for Fraggler.

Rosenbaum, & Larsson. (2024). Fraggler: A Python Package and CLI Tool for Automated Fragment Analysis. Journal of Open Source Software,
9(100), 6869. https://doi.org/10.21105/joss.06869.

1

https://orcid.org/0000-0003-2274-7343
https://doi.org/10.21105/joss.06869
https://github.com/openjournals/joss-reviews/issues/6869
https://github.com/Clinical-Genomics-Umea/fraggler
https://doi.org/10.5281/zenodo.13370671
http://csoneson.github.io/
https://orcid.org/0000-0003-3833-2169
https://github.com/kdm9
https://github.com/KatyBrown
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06869


Figure 1: Example of content available in Fraggler generated report. (A) Examples of peak areas from
PRT assay. (B) Linear model fitted to the included size standard. (C) Overview of all peaks found in the
PRT assay. (D) Peaks used to fit the linear model to the size standard. (E) All channels shown in one
figure for overview.

Statement of Need
Despite the empirically known robustness of PRT analysis (Algady et al., 2021) and the
widespread use of other FA applications, no reliable Python package exists to analyze FA
data. Typically, the output from FA machines, in the form of .fsa files, is analyzed using
commercial software such as GeneMapper or GeneMarker. Open-source alternatives like Fragman
(Covarrubias-Pazaran et al., 2016) or free software such as PeakScanner are also available.
However, these options are either proprietary, lack seamless integration into automated
workflows, or lack good documentation and relevant features.

We developed Fraggler to address all the aforementioned problems. Fraggler is entirely built in
Python, it is open source and platform-independent, it allows for easy and rapid analysis of FA
data, and it is easy to integrate within automated workflows. Fraggler is designed for scalable
automation and report generation of many samples from different FA applications and datasets,
ensuring reproducibility for users with little or no background in bioinformatics. Documentation
for Fraggler is provided at https://clinical-genomics-umea.github.io/fraggler/fraggler.html
and source code is available at https://github.com/Clinical-Genomics-Umea/fraggler. For
ease of installation and use, Fraggler is available at PyPI.

Implementation
Fraggler can be used in two different ways: (i) as a command-line interface (CLI) tool, or (ii)
as a Python package with an available application programming interface (API).

Dependencies
Fraggler relies on several stable and widely used external dependencies, many of which come
from the SciPy ecosystem, such as Pandas, NumPy, Scikit-learn and SciPy (Virtanen et al.,
2020).

Rosenbaum, & Larsson. (2024). Fraggler: A Python Package and CLI Tool for Automated Fragment Analysis. Journal of Open Source Software,
9(100), 6869. https://doi.org/10.21105/joss.06869.

2

https://www.thermofisher.com/order/catalog/product/4475073
https://softgenetics.com/products/genemarker/
https://www.thermofisher.com/order/catalog/product/4381867
https://clinical-genomics-umea.github.io/fraggler/fraggler.html
https://github.com/Clinical-Genomics-Umea/fraggler
https://pypi.org/project/fraggler/
https://doi.org/10.21105/joss.06869


Features
Peak Finding Algorithm

Peaks are determined using the Signal module in SciPy (Virtanen et al., 2020). Identified
peaks are compared to the peak with the highest intensity, and only peaks with a height ratio
above a user-defined threshold are returned as true peaks. The user can choose between
customized peak-finding or agnostic peak-finding algorithms.

Interpolate Basepairs from Migration Time

To accurately identify the peaks in the size-standard channel, the depth-first search algorithm is
used to calculate all possible combinations of size-standard values and the observed size-standard
peaks.

Combinations of size-standards and ladder peak pairs with the highest correlation, calculated
by the corr method in SciPy (Virtanen et al., 2020), are used to fit a spline-transformed linear
regression model using Scikit-learn (Pedregosa et al., 2012). The fitted model is used to
predict time base pairs (bp), fitting the time-series data to the ladder peak values (Figure 1 B
& D).

Fit Area Model to Peaks

Here, widths of the identified peaks from the peak finding algorithm are used. The peak widths
are used to separate the found peaks and include correct flanking regions to make plots and to
fit models to the identified peaks.

To fit models to the peaks, built-in functions and methods of the lmfit library are used, which
utilize non-linear least-squares minimization for curve fitting (Newville et al., 2014). The
user can specify which model to use, choosing between Voigt, Gaussian, or Lorentzian. The
peak area is returned from each fitted model given as an unit-normalized distribution. The
unit-normalized distribution for each peak is used to calculate peak area ratios between peaks.
Leveraging non-linear least-squares minimization mitigates the presence of stutter peaks, and
only the assumed true peak is used to fit the model (Figure 1 A).

Automated Reports

Fraggler implements a function for automated HTML report generation for each sample analyzed,
using the panel package.

CLI
The CLI Fraggler tool is used to generate HTML reports for the input .fsa files. The two
subcommands are fraggler area and fraggler peak. Full documentation of the required
and optional arguments can be found at https://github.com/Clinical-Genomics-Umea/fraggler.

Python API
Fraggler can be imported as a module in Python to be integrated into a larger workflow or
used in a Jupyter notebook, for example.

Full documentation for the API can be found at https://clinical-genomics-umea.github.io/
fraggler/fraggler.html. A tutorial exemplifying the API is also available.

Benchmarking
We compared the peak area ratios generated by Fraggler and PeakScanner across four different
PRT assays (Figure 2). Reference CNVs are plotted on the y-axis, while the ratio of the

Rosenbaum, & Larsson. (2024). Fraggler: A Python Package and CLI Tool for Automated Fragment Analysis. Journal of Open Source Software,
9(100), 6869. https://doi.org/10.21105/joss.06869.

3

https://github.com/Clinical-Genomics-Umea/fraggler
https://clinical-genomics-umea.github.io/fraggler/fraggler.html
https://clinical-genomics-umea.github.io/fraggler/fraggler.html
https://github.com/Clinical-Genomics-Umea/fraggler/blob/main/tutorial.ipynb
https://www.thermofisher.com/order/catalog/product/4381867
https://doi.org/10.21105/joss.06869


test and reference area is plotted on the x-axis. The results depicted in Figure 2 are very
similar, suggesting no apparent differences between the two softwares. However, one notable
distinction for users lies in the usability of the two tools. Generating results with PeakScanner
involves a manual procedure that consumes a significant amount of time, and the ratios need
to be calculated separately. In contrast, the Fraggler procedure is fully automated, scales well
and is hence suitable for clinical laboratories or other production laboratories.

Figure 2: Comparison between Fraggler and PeakScanner. The comparisons are made between four
different PRT assays, 1-4.

Acknowledgements
We thank Nicklas Strömberg for stating the need for such a tool as Fraggler. We also
thank Linda Köhn at Clinical Genomics in Umeå for testing Fraggler and for suggesting
improvements and new features. We thank Ed Hollox in the University of Leicester for sending
test data and answering questions about PRT. Also, we want to thank Dr. Lennart Österman
for his valuable input during the development of Fraggler. Lastly, we want to thank Richard
Palmqvist – the scientific director of Clinical Genomics in Umeå. Funding to support the
development was provided by SciLifeLab Clinical Genomics Platform and Region Västerbotten.

Rosenbaum, & Larsson. (2024). Fraggler: A Python Package and CLI Tool for Automated Fragment Analysis. Journal of Open Source Software,
9(100), 6869. https://doi.org/10.21105/joss.06869.

4

https://www.thermofisher.com/order/catalog/product/4381867
https://www.thermofisher.com/order/catalog/product/4381867
https://doi.org/10.21105/joss.06869


References
Algady, W., Weyell, E., Mateja, D., Garcia, A., Courtin, D., & Hollox, E. J. (2021). Genotyping

complex structural variation at the malaria-associated human glycophorin locus using a
PCR-based strategy. Annals of Human Genetics, 85(1), 7–17. https://doi.org/10.1111/
ahg.12405

Armour, J. A. L., Palla, R., Zeeuwen, P. L. J. M., den Heijer, M., Schalkwijk, J., & Hollox,
E. J. (2007). Accurate, high-throughput typing of copy number variation using paralogue
ratios from dispersed repeats. Nucleic Acids Research, 35(3), e19. https://doi.org/10.
1093/nar/gkl1089

Covarrubias-Pazaran, G., Diaz-Garcia, L., Schlautman, B., Salazar, W., & Zalapa, J. (2016).
Fragman: An R package for fragment analysis. BMC Genetics, 17, 62. https://doi.org/10.
1186/s12863-016-0365-6

Darby, B. J., Erickson, S. F., Hervey, S. D., & Ellis-Felege, S. N. (2016). Digital fragment
analysis of short tandem repeats by high-throughput amplicon sequencing. Ecology and
Evolution, 6(13), 4502–4512. https://doi.org/10.1002/ece3.2221

McCafferty, J., Reid, R., Spencer, M., Hamp, T., & Fodor, A. (2012). Peak studio: A tool
for the visualization and analysis of fragment analysis files. Environmental Microbiology
Reports, 4(5), 556–561. https://doi.org/10.1111/j.1758-2229.2012.00368.x

McCarroll, S. A., & Altshuler, D. M. (2007). Copy-number variation and association studies of
human disease. Nature Genetics, 39(7 Suppl), S37–42. https://doi.org/10.1038/ng2080

Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. (2014). LMFIT: Non-Linear Least-
Square minimization and Curve-Fitting for python. https://doi.org/10.5281/zenodo.11813

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.
(2012). Scikit-learn: Machine learning in python. https://arxiv.org/abs/1201.0490

Polley, S., Louzada, S., Forni, D., Sironi, M., Balaskas, T., Hains, D. S., Yang, F., & Hollox, E.
J. (2015). Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1) and
population subsistence strategy. Proceedings of the National Academy of Sciences of the
United States of America, 112(16), 5105–5110. https://doi.org/10.1073/pnas.1416531112

Royo, J. L., Pascual-Pons, M., Lupiañez, A., Sanchez-López, I., & Fibla, J. (2015). Genotyping
of common SIRPB1 copy number variant using paralogue ratio test coupled to MALDI-MS
quantification. Molecular and Cellular Probes, 29(6), 517–521. https://doi.org/10.1016/j.
mcp.2015.07.009

van Steenderen, C. (2022). BinMat: A molecular genetics tool for processing binary data
obtained from fragment analysis in R. Biodiversity Data Journal, 10, e77875. https:
//doi.org/10.3897/BDJ.10.e77875

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., …
SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Rosenbaum, & Larsson. (2024). Fraggler: A Python Package and CLI Tool for Automated Fragment Analysis. Journal of Open Source Software,
9(100), 6869. https://doi.org/10.21105/joss.06869.

5

https://doi.org/10.1111/ahg.12405
https://doi.org/10.1111/ahg.12405
https://doi.org/10.1093/nar/gkl1089
https://doi.org/10.1093/nar/gkl1089
https://doi.org/10.1186/s12863-016-0365-6
https://doi.org/10.1186/s12863-016-0365-6
https://doi.org/10.1002/ece3.2221
https://doi.org/10.1111/j.1758-2229.2012.00368.x
https://doi.org/10.1038/ng2080
https://doi.org/10.5281/zenodo.11813
https://arxiv.org/abs/1201.0490
https://doi.org/10.1073/pnas.1416531112
https://doi.org/10.1016/j.mcp.2015.07.009
https://doi.org/10.1016/j.mcp.2015.07.009
https://doi.org/10.3897/BDJ.10.e77875
https://doi.org/10.3897/BDJ.10.e77875
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.06869

	Summary
	Statement of Need
	Implementation
	Dependencies
	Features
	Peak Finding Algorithm
	Interpolate Basepairs from Migration Time
	Fit Area Model to Peaks
	Automated Reports

	CLI
	Python API

	Benchmarking
	Acknowledgements
	References

