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Summary
Automated Research Assistant (autora) is a Python package for automating and integrating
empirical research processes, such as experimental design, data collection, and model discovery.
With this package, users can define an empirical research problem and specify the methods they
want to employ for solving it. autora is designed as a declarative language in that it provides a
vocabulary and set of abstractions to describe and execute scientific processes and to integrate
them into a closed-loop system for scientific discovery. The package interfaces with other
tools for automating scientific practices, such as scikit-learn for model discovery, sweetpea
and sweetbean for experimental design, firebase_admin for executing web-based experiments,
and autodoc for documenting the empirical research process. While initially developed for
the behavioral sciences, autora is designed as a general framework for closed-loop scientific
discovery, with applications in other empirical disciplines. Use cases of autora include the
execution of closed-loop empirical studies (Musslick et al., 2024), the benchmarking of scientific
discovery algorithms (Hewson et al., 2023; Weinhardt et al., 2024), and the implementation of
metascientific studies (Musslick et al., 2023).

Statement of Need
The pace of empirical research is constrained by the rate at which scientists can alternate
between the design and execution of experiments, on the one hand, and the derivation of
scientific knowledge, on the other hand (Musslick et al., in press). However, attempts to increase
this rate can compromise scientific rigor, leading to lower quality of formal modeling, insufficient
documentation, and non-replicable findings. autora aims to surmount these limitations by
formalizing the empirical research process and automating the generation, estimation, and
empirical testing of scientific models. By providing a declarative language for empirical research,
autora offers greater transparency and rigor in empirical research while accelerating scientific
discovery. While existing scientific computing packages solve individual aspects of empirical
research, there is no workflow mechanic for integrating them into a single pipeline, e.g., to
enable closed-loop experiments. autora offers such a workflow mechanic, integrating Python
packages for automating specific aspects of the empirical research process.
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Figure 1: The autora framework illustrated for closed-loop behavioral research. (A) Exemplary autora

workflow. autora implements components (colored boxes; see text) that can be integrated into a
closed-loop discovery process. Workflows expressed in autora depend on modules for individual scientific
tasks, such as designing behavioral experiments, executing those experiments, and analyzing collected
data. (B) autora’s components acting on the state object. The state object maintains relevant scientific
data, such as experimental conditions X, observations Y, and models, and can be modified by autora

components. Here, the cycle begins with an experimentalist adding experimental conditions 𝑥1 to the
state. The experiment runner then executes the experiment and collects corresponding observations 𝑦1.
The cycle concludes with the theorist computing a model that relates 𝑥1 to 𝑦1.
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Overview and Components
The autora framework implements and interfaces with components automating different phases
of the empirical research process (Figure 1A). These components include experimentalists
for automating experimental design, experiment runners for automating data collection, and
theorists for automating scientific model discovery. To illustrate each component, we consider
an exemplary behavioral research study (cf. Figure 1) that examines the probability of human
participants detecting a visual stimulus as a function of its luminosity.

Experimentalist components take the role of a research design expert, determining the next
iteration of experiments to be conducted. Experimentalists are functions that identify experi-
mental conditions which can be subjected to measurement by experiment runners, such as
different levels of stimulus luminosity. To determine these conditions, experimentalists may
use information about candidate models obtained from theorist components, experimental
conditions that have already been probed, or respective observations. The autora framework
offers various experimentalist packages, each for determining new conditions based on, for
example, novelty, prediction uncertainty, or model disagreement (Dubova et al., 2022; Musslick
et al., 2023).

Experiment runner components correspond to research technicians collecting data from an
experiment. They are implemented as functions that accept experimental conditions as input
(e.g., a pandas dataframe with columns representing different experimental variables) and
produce collected observations as output (e.g., a pandas dataframe with columns representing
different experimental variables along with corresponding measurements). autora (4.2.0)
provides experiment runners for two types of automated data collection: real-world and
synthetic. Real-world experiment runners include interfaces for collecting data in the real
world. For example, the autora framework offers experiment runners for automating the
data collection from web-based experiments for behavioral research studies (Musslick et al.,
2024). In the behavioral experiment described above, an experiment runner may set up a
web-based experiment that measures the probability of human participants detecting visual
stimuli with varying luminosities. These runners interface with external components including
recruitment platforms (e.g, Prolific; Palan & Schitter (2018)) for coordinating the recruitment
of participants, databases (e.g., Google Firestore) for storing collected observations, and web
servers for hosting the experiments (e.g., Google Firebase). Synthetic experiment runners act
as simulators for real-world experiments: they specify the data-generating process and collect
observations from it. For example, autora-synthetic implements established models of human
information processing (e.g, for perceptual discrimination) and conducts experiments on them.
These synthetic experiments serve multiple purposes, such as testing and benchmarking autora

components before applying them in the real-world (Musslick et al., 2024) or conducting
computational metascience studies (Musslick et al., 2023).

Theorist components embody the role of a computational scientist, employing modeling
techniques to find a model that best characterizes, predicts, and/or explains the study’s
observations. Theorists may identify different types of scientific models (e.g., statistical,
mathematical, or computational) implemented as scikit-learn estimators (Pedregosa et al.,
2011). In case of the behavioral research study, a model may correspond to a psychophysical
law relating stimulus luminosity to the probability of detecting the stimulus. autora provides
interfaces for various equation discovery methods that are implemented as scikit-learn

estimators, such as deep symbolic regression (Landajuela et al., 2022; Petersen et al., 2021),
PySR (Cranmer et al., 2020), and the Bayesian Machine Scientist (Guimerà et al., 2020; Hewson
et al., 2023). Alternatively, a model may correspond to a fine-tuned large language model
(Binz et al., 2024), enabling its automated alignment with human behavior from web-based
experiments. A model is generated by fitting experimental data. Accordingly, theorists take
as input a pandas dataframe specifying experimental conditions (instances of experimental
variables) along with corresponding observations to fit a respective model. The model can
then be used to generate predictions, e.g., to inform the design of a subsequent experiment.

Musslick et al. (2024). AutoRA: Automated Research Assistant for Closed-Loop Empirical Research. Journal of Open Source Software, 9(104),
6839. https://doi.org/10.21105/joss.06839.

3

https://doi.org/10.21105/joss.06839


Design Principles and Packaging
autora was designed as a general framework aimed at democratizing the automation of
empirical research across the scientific community. Key design decisions were: 1) using a
functional paradigm for the components and 2) splitting components across Python namespace
packages.

Each component is a function that operates on immutable “state objects” which represent
data from an experiment (Figure 1B), such as proposed experimental conditions, corresponding
observations (represented as a pandas dataframe), and scientific models (represented as a list
of scikit-learn estimators). Data produced by each component can be seen as additions
to the existing data stored in the state. Thus, each component 𝐶 takes in existing data in a
state 𝑆, adds new data Δ𝑆, and returns an updated state 𝑆′,

𝑆′ = 𝐶(𝑆) = 𝑆 +Δ𝑆.

Accordingly, the components share their interface – every component loads data from and saves
data to state objects, so they can be ordered arbitrarily, and adding a new component is as
simple as implementing a new function or scikit-learn-compatible estimator and wrapping it
with a utility function provided in autora-core. State immutability allows for easy parallelism
and reproducibility (so long as the components themselves have no hidden state).

The autora framework presumes that each component is distributed as a separate package
but in a shared namespace, and that autora-core – which provides the state – has very few
dependencies of its own. For users, separate packages minimize the time and storage required
for an install of an autora project. For contributors, they reduce incidence of dependency
conflicts (a common problem for projects with many dependencies) by reducing the likelihood
that the library they need has an existing conflict in autora. It also allows contributors to
independently develop and maintain modules, fostering ownership of and responsibility for their
contributions. External contributors can request to have packages vetted and included as an
optional dependency in the autora package.
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