
Aurora: An open-source Python implementation of the
EMTF package for magnetotelluric data processing
using MTH5 and mt_metadata
Karl N. Kappler 5,6, Jared R. Peacock 1, Gary D. Egbert 2, Andrew
Frassetto 3, Lindsey Heagy 4, Anna Kelbert 1, Laura Keyson3, Douglas
Oldenburg 4, Timothy Ronan 3, and Justin Sweet 3

1 U.S. Geological Survey, USA 2 Oregon State University, USA 3 EarthScope, USA 4 University of
British Columbia, USA 5 Space Science Institute, USA 6 DIAS Geophysical, Canada

DOI: 10.21105/joss.06832

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @blsqr
• @sinanozaydin

Submitted: 17 March 2024
Published: 22 August 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Aurora software package robustly estimates single station and remote reference electro-
magnetic transfer functions (TFs) from magnetotelluric (MT) time series. Aurora is part of
an open-source processing workflow that leverages the self-describing data container MTH5,
which in turn leverages the general mt_metadata framework to manage metadata. These
pre-existing packages simplify the processing workflow by providing managed data structures,
transfer functions to be generated with only a few lines of code. The processing depends on
two inputs – a table defining the data to use for TF estimation and a JSON file specifying
the processing parameters, both of which are generated automatically and can be modified if
desired. Output TFs are returned as mt_metadata objects, and can be exported to a variety
of common formats for plotting, modeling, and inversion.

Key Features
• Tabular data indexing and management (Pandas dataframes),
• Dictionary-like processing parameters configuration
• Programmatic or manual editing of inputs
• Largely automated workflow

Introduction
Magnetotellurics (MT) is a geophysical technique for probing subsurface electrical conductivity
using collocated electric and magnetic field measurements. Field data is collected in the
time domain, however the Earth can be approximated as a linear system in the frequency
domain. Therefore, common practice is to estimate the time invariant (frequency domain)
transfer function (TF) between electric and magnetic channels to get information of the Earth’s
resistivity structure (Egbert, 2002). If measurements are orthogonal, the TF is equivalent to
the electrical impedance tensor (Z) (Vozoff, 1991).

[𝐸𝑥
𝐸𝑦

] = [𝑍𝑥𝑥 𝑍𝑥𝑦
𝑍𝑦𝑥 𝑍𝑦𝑦

] [𝐻𝑥
𝐻𝑦

]

where (𝐸𝑥, 𝐸𝑦), (𝐻𝑥, 𝐻𝑦) denote orthogonal electric and magnetic fields respectively. TF
estimation requires the E and H time series and metadata (locations, orientations, timestamps)
along with a collection of signal processing and statistical techniques (Egbert (1997) and
references therein). The MTH5 data container archives metadata with the data (Peacock et

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

1

https://orcid.org/0000-0002-1877-1255
https://orcid.org/0000-0002-0439-0224
https://orcid.org/0000-0003-1276-8538
https://orcid.org/0000-0002-8818-3731
https://orcid.org/0000-0002-1551-5926
https://orcid.org/0000-0003-4395-398X
https://orcid.org/0000-0002-4327-2124
https://orcid.org/0000-0001-8450-9573
https://orcid.org/0000-0001-7323-9758
https://doi.org/10.21105/joss.06832
https://github.com/openjournals/joss-reviews/issues/6832
https://github.com/simpeg/aurora
https://doi.org/10.5281/zenodo.13334589
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/blsqr
https://github.com/sinanozaydin
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06832


al. (2022)) and supplies time series as xarray (Hoyer & Hamman (2017)) objects for efficient,
lazy access to data and easy application of scientific computing libraries available in Python.

Statement of Need
FORTRAN processing codes have long been available (e.g. EMTF Egbert et al. (2017), or
BIRRP Chave (1989)) but lack the readability of high-level languages and modifications to
these programs are seldom attempted (Egbert et al., 2017), and have the additional barrier
of compiling. Recently several Python versions of MT processing codes have been released
by the open source community, including Shah et al. (2019), Smaı ̈ & Wawrzyniak (2020),
Ajithabh & Patro (2023), and Friedrichs (2022). Aurora adds to this canon of options but
differs by leveraging the MTH5 and mt_metadata packages eliminating a need for development
of time series or metadata containers (Peacock et al. (2022)). As a Python representation of
Egbert’s EMTF Remote Reference processing software, Aurora provides a continuity in the
MT code space as the languages evolve. Aurora is two degrees separated from the FORTRAN
EMTF, as we used a Matlab implementation of EMTF from Prof. from Gary Egbert (Oregon
State University, written communication, 2022-05-01) as an initial framework. By providing
an example workflow employing MTH5, we hope other developers may benefit from following
this model, allowing researchers interested in signal-and-noise separation in MT to spend more
time exploring and testing algorithms to improve TF estimates, and less time developing and
redeveloping formats and management tools for data and metadata. Aurora is distributed
under the MIT open-source license.

This manuscript describes the high-level concepts of the software – for information about
MT data processing Ajithabh & Patro (2023) provides a concise summary, and more in-depth
details can be found in Vozoff (1991), Egbert (2002) and references therein.

Problem Approach
A TF instance depends on two key prior decisions: a) The data input to the TF computation
algorithm, and b) The algorithm itself including the specific values of the processing parameters.
Aurora formalizes these concepts as classes (KernelDataset and Processing, respectively),
and a third class TransferFunctionKernel (Figure 1), a composition of the Processing, and
KernelDataset. TransferFunctionKernel provides a place for validating consistency between
selected data and processing parameters and specifies all information needed to make the
calculation of a TF reproducible.

Generation of robust TFs can be done in only a few lines starting from an MTH5 archive.
Simplicity of workflow is due to the MTH5 data container already storing comprehensive
metadata, including a channel summary table describing all time series stored in the archive
including start/end times and sample rates. Users can easily view a tabular summary of
available data and select station pairs to process. Once a station – and optionally a remote
reference station – are defined, the simultaneous time intervals of data coverage at both stations
are identified automatically, providing the KernelDataset. Reasonable starting processing
parameters are automatically generated for a given KernelDataset, and can be modified with
code or via manual changes to a JSON file. Once the TransferFunctionKernel is defined, the
processing automatically follows the flow described by Figure 2. Input time series are from a
MTH5, these can initially be drawn from Phoenix, LEMI, FDSN, Metronix, Zonge, systems etc.
and the resultant transfer functions can be exported to the most common TF formats such as
.edi, .zmm, ,j, .avg, .xml etc. The images of Figure 2 are conceptual – in reality the time series
can have data from more than one station, and the spectrograms are also multivariate (not
single channel as shown). The regression is also multivariate, and applied on complex-valued
data from the spectrograms, this illustration however conveys the key idea of regression in the
presence of outliers and mixed clusters.

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

2

https://opensource.org/license/mit/
https://doi.org/10.21105/joss.06832


Figure 1: TF Kernel concept diagram: Upper panel represents the TF Kernel with two inlay boxes
representing the dataset (Pandas DataFrame) and a processing configuration (JSON). Lower panel
illustrates example instances of these structures. Processing configuration image is clipped to show only
a few lines.

Figure 2: The main interfaces of Aurora TF processing. Example time series from MTH5 archive in the
linked notebook (using MTH5 built-in time series plotting), spectrogram from Fourier coeffcient (FC)
data structure, regression cartoon from Hand (2018) and TF from SPUD.

Example
This section refers to a Jupyter notebook companion to this paper (archived on GitHub:
process_cas04_mulitple_station). The companion notebook builds an MTH5 dataset from
the EMscope dataset (Schultz (2010)) and executes data processing – a minimal_example is
shown below. Apparent resistivities are plotted in Figure 3 along with the EMTF-generated
results hosted at EarthScope EMTF Spud.

from aurora.config.config_creator import ConfigCreator

from aurora.pipelines.process_mth5 import process_mth5

from aurora.pipelines.run_summary import RunSummary

from aurora.transfer_function.kernel_dataset import KernelDataset

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

3

https://ds.iris.edu/spud/emtf/18633652
https://github.com/simpeg/aurora/blob/joss/docs/tutorials/process_cas04_mulitple_station.ipynb
http://www.ds.iris.edu/spud/emtf/18633652
https://doi.org/10.21105/joss.06832


run_summary = RunSummary()

run_summary.from_mth5s(["8P_CAS04_NVR08.h5",])

kernel_dataset = KernelDataset()

kernel_dataset.from_run_summary(run_summary, "CAS04", "NVR08")

cc = ConfigCreator()

config = cc.create_from_kernel_dataset(kernel_dataset)

tf = process_mth5(config, kernel_dataset)

tf.write(fn="CAS04_rrNVR08.edi", file_type="edi")

Code snippet with steps to generate a TF from an MTH5. With MTH5 file
(“8P_CAS04_NVR08.h5”) in present working directory, a table of available contigu-
ous blocks of multichannel time series is generated from RunSummary(). In this example,
the file contains data from two stations, “CAS04” and “NVR08” which are accessed from
the EarthScope data archives. Then station(s) to process are selected (by inspection of
the RunSummary dataframe) to generate a KernelDataset. The KernelDataset identifies
simultaneous data at the local and reference site, and generates processing parameters, which
can be edited before passing them to process_mth5, and finally export TF to a standard
output format, in this case edi.

To run the example you must install aurora, which can be done via conda or pip. Detailed
instructions and further documentation can be found on the SimPEG (Cockett et al. (2015))
documentation website.

Figure 3: Comparison of apparent resistivities from Aurora and EMTF for station CAS04. Both curves
exhibit scatter in the low signal-to-noise ratio MT “dead band” between 1-10s, but most of estimates are
very similar. The Aurora results are from executing the example code snippet. The plotting details are in
the Jupyter notebook

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

4

http://simpeg.xyz/aurora/
https://github.com/simpeg/aurora/blob/joss/docs/tutorials/process_cas04_mulitple_station.ipynb
https://doi.org/10.21105/joss.06832


Testing
Aurora uses continuous integration (Duvall et al., 2007) via unit and integrated tests, with
ongoing improvement of test coverage. Currently, CodeCov measures 77% code coverage (core
dependencies mt_metadata and MTH5 at 84% and 60% respectively). Aurora uses a small
synthetic MT dataset for integrated tests. On push to GitHub, the synthetic data are processed
and the results compared against manually validated values (from Aurora and EMTF results)
that are also stored in the repository. Deviation from expected results causes test failures,
alerting developers a code change resulted in an unexpected baseline processing result. In the
summer of 2023, wide-scale testing on EarthScope data archives was performed indicating
that the Aurora TF results are similar to those form the EMTF Fortran codes, in this case for
hundreds of real stations rather than a few synthetic ones. Before release to common PyPi
and Conda Forge repositories example Jupyter notebooks are also run via GitHub actions to
assert functionality.

Software Modifications
Aurora uses GitHub issues to track tasks and planned improvements. We have recently added
utilities for using a “Fourier coefficient” (FC) layer in the MTH5. This allows for storage of the
time series of Fourier coefficients in the MTH5, so the user can initialize TF processing from
the FC layer, rather than the time series layer of the MTH5. Prototype usage of this layer is
already in Aurora’s tests, but not part of the normal workflow. Noise suppression techniques,
for example coherence and polarization sorting and Mahalanobis distance (e.g. Ajithabh &
Patro (2023), Platz & Weckmann (2019)) could help reduce noise bias in the transfer functions.
A graphical data selection/rejection interface with time series plotting could allow users to
manually weight data. The TransferFunctionKernel information could be implemented into
both the MTH5 and the output EMTF_XML (Kelbert (2020)) for completeness. Unit and
integrated tests could be expanded, including a test dataset from audio MT band. There are
plans for Aurora to be co-developed with mt_metadata, MTH5 and MTPy-v2 to maintain
the ability to provide outputs for inversion and modeling. These improvements would support
community participation in a comparative analysis of the open-source codes available to build
a recipe book for handling noise from various open-archived datasets.

Conclusion
Aurora provides an open-source Python implementation of the EMTF package for magnetotel-
luric data processing. Processing is relatively simple and requires very limited domain knowledge
in time series analysis. Aurora also serves as a prototype example of how to plug processing into
an existing open data and metadata ecosystem (MTH5, mt_metadata, & MTpy-v2). Aurora
can be used as an example interface to these packages for the open source MT community,
and these tools can contribute to workflows that allow more focus on geoscience analysis, and
less on the nuances of data management.

Acknowledgments
The authors would like to thank IRIS (now EarthScope) for supporting the development of
Aurora. Joe Capriotti at SimPEG helped with online documentation and the initial release.
Ben Murphy (Murphy Geo Consulting, LLC) provided methods for rotating impedance tensors
from z-file formatted data. The facilities of the EarthScope Consortium are funded through
the National Science Foundation’s Seismological Facility for the Advancement of Geoscience
(SAGE) Award under Cooperative Agreement EAR-1724509. Any use of trade, firm, or product
names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

5

https://pypi.org/project/aurora/
https://anaconda.org/conda-forge/aurora
https://doi.org/10.21105/joss.06832


References

Ajithabh, K., & Patro, P. K. (2023). SigMT: An open-source python package for magnetotelluric
data processing. Computers & Geosciences, 171, 105270. https://doi.org/10.1016/j.cageo.
2022.105270

Chave, A. D. (1989). BIRRP: Bounded influence, remote reference processing. Journal of
Geophysical Research, 94(B10), 14–215.

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG:
An open source framework for simulation and gradient based parameter estimation in
geophysical applications. Computers & Geosciences. https://doi.org/10.1016/j.cageo.2015.
09.015

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration: Improving software
quality and reducing risk. Pearson Education.

Egbert, G. D. (1997). Robust multiple-station magnetotelluric data processing. Geophysi-
cal Journal International, 130(2), 475–496. https://doi.org/10.1111/j.1365-246x.1997.
tb05663.x

Egbert, G. D. (2002). Processing and interpretation of electromagnetic induction array data.
Surveys in Geophysics, 23(2-3), 207–249. https://doi.org/10.1023/A:1015012821040

Egbert, G. D., Kelbert, A., & Meqbel, N. M. (2017). Mod3DMT and EMTF: Free software
for MT data processing and inversion. AGU Fall Meeting Abstracts, 2017, NS44A–04.

Friedrichs, B. (2022). MTHotel. In GitHub repository. GitHub. https://github.com/bfrmtx/
MTHotel

Hand, D. J. (2018). Statistical challenges of administrative and transaction data. Journal
of the Royal Statistical Society Series A: Statistics in Society, 181(3), 555–605. https:
//doi.org/10.1111/rssa.12315

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334/jors.148

Kelbert, A. (2020). EMTF XML: New data interchange format and conversion tools for
electromagnetic transfer functions. Geophysics, 85(1), F1–F17. https://doi.org/10.1190/
geo2018-0679.1

Peacock, J., Kappler, K., Heagy, L., Ronan, T., Kelbert, A., & Frassetto, A. (2022). MTH5:
An archive and exchangeable data format for magnetotelluric time series data. Computers
& Geosciences, 162, 105102. https://doi.org/10.1016/j.cageo.2022.105102

Platz, A., & Weckmann, U. (2019). An automated new pre-selection tool for noisy magne-
totelluric data using the mahalanobis distance and magnetic field constraints. Geophysical
Journal International, 218(3), 1853–1872. https://doi.org/10.1093/gji/ggz197

Schultz, A. (2010). EMScope: A continental scale magnetotelluric observatory and data
discovery resource. Data Science Journal, 8, IGY6–IGY20. https://doi.org/10.2481/dsj.
ss_igy-009

Shah, N., Samrock, F., & Saar, M. O. (2019). Resistics: A versatile native python 3
package for processing of magnetotelluric data. 28. Schmucker-Weidelt-Kolloquium für
Elektromagnetische Tiefenforschung.

Smaı,̈ F., & Wawrzyniak, P. (2020). Razorback, an open source python library for robust
processing of magnetotelluric data. Frontiers in Earth Science, 8, 296. https://doi.org/10.
3389/feart.2020.00296

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

6

https://doi.org/10.1016/j.cageo.2022.105270
https://doi.org/10.1016/j.cageo.2022.105270
https://doi.org/10.1016/j.cageo.2015.09.015
https://doi.org/10.1016/j.cageo.2015.09.015
https://doi.org/10.1111/j.1365-246x.1997.tb05663.x
https://doi.org/10.1111/j.1365-246x.1997.tb05663.x
https://doi.org/10.1023/A:1015012821040
https://github.com/bfrmtx/MTHotel
https://github.com/bfrmtx/MTHotel
https://doi.org/10.1111/rssa.12315
https://doi.org/10.1111/rssa.12315
https://doi.org/10.5334/jors.148
https://doi.org/10.1190/geo2018-0679.1
https://doi.org/10.1190/geo2018-0679.1
https://doi.org/10.1016/j.cageo.2022.105102
https://doi.org/10.1093/gji/ggz197
https://doi.org/10.2481/dsj.ss_igy-009
https://doi.org/10.2481/dsj.ss_igy-009
https://doi.org/10.3389/feart.2020.00296
https://doi.org/10.3389/feart.2020.00296
https://doi.org/10.21105/joss.06832


Vozoff, K. (1991). THE MAGNETOTELLURIC METHOD. In Electromagnetic Methods
in Applied Geophysics: Volume 2, Application, Parts A and B. Society of Exploration
Geophysicists. https://doi.org/10.1190/1.9781560802686.ch8

Kappler et al. (2024). Aurora: An open-source Python implementation of the EMTF package for magnetotelluric data processing using MTH5
and mt_metadata. Journal of Open Source Software, 9(100), 6832. https://doi.org/10.21105/joss.06832.

7

https://doi.org/10.1190/1.9781560802686.ch8
https://doi.org/10.21105/joss.06832

	Summary
	Key Features

	Introduction
	Statement of Need
	Problem Approach
	Example
	Testing
	Software Modifications
	Conclusion
	Acknowledgments
	References

